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THE RADIATED NOISE FROM ISOTROPIC

TURBULENCE REVISITED.

Geoffrey M. Lilley*

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA23665, USA.

Abstract

The noise radiated from isotropic turbulence at low Mach numbers and high Reynolds num-

bers, as derived by Proudman (1952), was the first application of Lighthill's Theory of Aerody-

namic Noise to a complete flow field. The theory presented by Proudman involves the assump-

tion of the neglect of retarded time differences and so replaces the second-order retarded-time

and space covariance of Lighthill's stress tensor, Tq, and in particular its second time deriva-

tive, by the equivalent simultaneous covariance. This assumption is a valid approximation in

the derivation of the c92T_j/cOt 2 covariance at low Mach numbers, but is not justified when that

covariance is reduced to the sum of products of the time derivatives of equivalent second-order

velocity covariances as required when Gaussian statistics are assumed. The present paper re-

moves these assumptions and finds that although the changes in the analysis are substantial,

the change in the numerical result for the total acoustic power is small.

The present paper also considers an alternative analysis which does not neglect retarded

times. It makes use of the Lighthill relationship, whereby the fourth-order Tij retarded-time

covariance is evaluated from the square of similar second-order covariance, which is assumed

known. In this derivation no statistical assumptions are involved. This result, using distribu-

tions for the second-order space-time velocity squared covariance based on the Direct Numerical

Simulation(DNS) results of both Sarkar and Hussaini(1993) and Dubois(1993), is compared

with the re-evaluation of Proudman's original model. These results are then compared with

the sound power derived from a phenomenological model based on simple approximations to

the retarded-time/space covariance of T_. Finally the recent numerical solutions of Sarkar and

Hussaini(1993) for the acoustic power are compared with the results obtained from the analytic

solutions.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681. Emeritus Professor, Department of Aeronautics

and Astronautics, University of Southampton, U.K.
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t.Introduction

Following the publication by Lighthill(1952) of'The Theory of Aerodynamic Noise', Proudman(1952)

considered the problem of its application to the generation of noise from isotropic turbulence. Batch-

elor(1951) had previously considered the pressure fluctuations in isotropic turbulence, and this

proved to be an important first step in the consideration of the noise radiated from a finite volume

of isotropic turbulence embedded in an otherwise infinite compressible medium at rest. Proudman

discusses in great detail how Lighthill's Theory can be applied to this problem of isotropic turbu-

lence. The theory requires information concerning the statistical properties of isotropic turbulence,

including, in particular, the retarded-time and space covariance of the Lighthill stress tensor Ti i.

Proudman considers an infinite expanse of compressible fluid containing a finite region of turbu-

lent motion, which generates sound radiating into the surrounding fluid, which is at rest, apart from
the small motions characteristic of sound. Proudman assumes that the finite region of turbulent

motion has been initially excited by some forcing function such that its initial characteristics are

isotropic, and the turbulent Reynolds number, based on the velocity and length scale of the energy

containing eddies, is very large. The turbulent kinetic energy then decays with time. Proudman
discusses the contributions to the radiated sound from eddies of different length scales and reaches

the conclusion that the generation of sound from the turbulence is mainly from two classes of

eddies, those with scales in the dissipation range and those in the energy containing range. It is

found that only the latter class of eddies make an appreciable contribution to the radiated sound

at high Reynolds numbers. Proudman finds in general there are also two main contributions to the

generated and thence radiated noise. The first arises from the decay of the turbulent kinetic energy

while the second relates to its instantaneous generation. Proudman notes that ]n the initial period

of decay, the effects of the retarded time between the source volume and the observer cannot be

neglected even when the Mach number of the turbulence is small: The decay in the strengths of

the equivalent acoustic sources is then so rapid that the intensity of sound outside the turbulence

is dependent on the shape of the turbulent region and the turbulent energy decay law. Proudman

suggests that the theory of aerodynamic noise, in the case of isotropic turbulence, is best applied

to cases where the intensity of the turbulence is maintained constant in time during the processes

of generation and radiation of the sound to the far-field. Also at low Mach numbers, the effects of
the retarded time are small and can be neglected. Such conditions can only apply when the initial

Reynolds number is very large. Thus the sound intensity in the far-field possesses a local time

averaged value, and similarly for the total acoustic power. Accordingly the mean total acoustic

power is a function of the time during the decay.

Proudman found to a good approximation that the total acoustic power radiated from this

embedded finite region of turbulence contained within an infinite expanse of compressible fluid, is a

function of the local time averaged kinetic energy of the turbulence per unit volume, K, and the time

averaged rate of dissipation of the kinetic energy per unit volume, e. We write u = x/_ u 2 > as the

characteristic velocity of the energy containing eddies The corresponding characteristic length of the

energy containing eddies we write as l, which is proportional to the integral scale of the turbulence,

given below as L. In what follows, we assume l is of order L. In such an approximation, we can

neglect the decay laws of the kinetic energy and the rate of dissipation of the kinetic energy and

assume K and ¢ are functions independent of time during the calculation of the sound generation

and its radiation. Here < u 2 > is 2K/3, and during the decay we may put e = 1,5u3/L. However,



wemayconsider,asdoesProudman,the general case where noise is generated at any time in the

decaying nonstationary turbulence provided the initial Reynolds number is sufficiently large. In

isotropic turbulence when the flow is'nearly incompressible, which is the case when the turbulent

Mach number, M = u/coo, is small and where coo is the ambient speed of sound, we can write

the simultaneous double-velocity correlation tensor between any two points A and B, distance r

apart, in the turbulent flow, at a given time, t, as

_r 7" pQij(r, t) =< _,uj >-< u 2 > [- ftrirj + (f + _f )6ij], (1.1)

where f(r, t) is a scalar function of r, the distance between A and B, and dashes denote differen-

tiation with respect to r. < u 2 > is the ensemble average of the longitudinal velocity components

in the direction of A to B at either A or B. In isotropic turbulence Qij is independent of position

in the domain. We write the integral length scale as

f0oo
L(t) = f(r,t)dr. (1.2)

Here < u 2 >, f(r, t), L , l, K, e, and M are all functions of time during the decay of the turbulence

from its given initial state. Similar results are obtained when the covariance is taken at different

times at A and B. Qij and f are then functions of the time during the decay, the time separation

between the times at A and B, and their space separation. Finally Proudman finds the total

acoustic power as a function of u, L and f, only.

Proudman notes that the Lighthill theory takes full account of the propagation of sound through

the turbulence, and variations of the sound speed through the turbulence as well as the back-reaction

of the turbulence on the sound and the related, but very much weaker interaction, with the sound

on the turbulence. Also at distances of many acoustic wavelengths from the turbulence, the radia-

tion depends on the temporal differentiation of Tii, provided the Mach number of the flow is small

and the Reynolds number is large. Further at low Mach numbe(s the components of the turbulent
intensity at a given frequency generate noise of the same frequency, such that the smallest acoustic

wavelengths for which the acoustic energy is significantly different from zero must be very much

larger than the characteristic length scales of the components of the turbulent energy (the larger

eddies in the turbulence) generating the noise. In this case of low Mach number flows in the absence

of a mean flow velocity, the proper matching conditions between the wave-numbers and frequen-

cies in the turbulence and those in the far sound field are that the frequency of sound, w, equals

that in the turbulence, and the wave-number vector in the turbulence, k, is equal to -(x/x)(w/coo).

Proudman considers the case where the integral length scale of the turbulence, L, is very small

compared with the typical dimension, D, of the turbulent domain. Proudman argues that the

distance for the covariance to fall to zero must also be small compared with the dimensions of

the turbulent region, D, in order that 'edge effects' from the boundaries to the turbulent domain

will be relatively small. Within such a boundary layer, the turbulent intensity and vorticity fall

to zero, and remains zero everywhere outside the region of turbulent flow. Within that boundary

layer the turbulence is likely to be anisotropic and to have characteristics different from those in

the central region of turbulent motion. Its thickness will be at least of order 3L, and for the volume

of the boundary region to be small compared with the total volume of turbulence, we must have



L/D < O(1/100), say. (Such conditions are easy to specify in dealing with the problem analytically,

but clearly present problems when considering the problem numerically.) Also the turbulence must

not decay significantly in the time the sound takes to cross the turbulent region. Since the local

eddy turnover time is K/e = O(L/u), we find the Mach number of the turbulence, M = u/c_, must

satisfy the condition, M << L/D << 1, which is a very stringent condition indeed. Since the wave-

length of the sound, )_s, generated by the turbulence, at a frequency, w, is given by ,ks = 27rcoo/_,

the above condition is equivalent to L/)_8 being a very small quantity even at large values of the

frequency, w. We define the reference Strouhal number of the -turbulence, ST = _L/u, which is

O(1), and where fl is the reference frequency in the turbulence, is of order of the peak frequency in

the turbulent energy spectrum. When D_/coo << 2_r, the source is compact, and this is the case we

are considering here. We emphasize these are the requirements for studying isotropic turbulence at

low Mach numbers, or near incompressible flow, where, as discussed above, M << 0.01. The results

obtained for the characteristics of the radiated noise, when applied to higher Mach numbers, need

careful consideration.

Proudman finds at high Reynolds numbers that the acoustic power per unit volume of isotropic

turbulence, Ps ¢x p_EM 5, and on substituting the relations for e and M above, we find

(_P°°US (1.3)
P'- c_L '

where (_, which we may call the Proudman constant, is a numerical constant. Its value is found by

Proudman to depend on the shape of the longitudinal velocity scalar correlation function, f(r/l).

For f(r/l) = exp(-r2/12), where l = 2LIve, Proudman found the value v_ = 13.5, whereas with

Heisenberg's form for f(r/L), as given by Batchelor(1953), c_ = 37.5. During the decay, u and L

vary with time. In self-preserving flow, where K o¢ t -1, and L o_ t 1/2, Proudman finds Ps o¢ t -9/2.

The theory presented below also considers the case of a very high initial turbulent Reynolds

number. The results obtained by Proudman have been re-evaluated in the present paper and are

compared with those obtained using the approach proposed by Lighthill(1992) whereby the fourth-

order velocity covariance is derived from known values of the square of the similar second-order

covariance. Results are also given using a phenomenological model for the (Tij)tt covariance. Finally

the recent results of Sarkar and Hussaini(1993), based on Direct Numerical Simulations,(DNS), are

compared with the analytic results. However these (DNS) results, and some further unpublished

(DNS) results of Dubois(1993), have themselves guided to a very large extent, and in some cases
confirmed, the assumptions made in the analytic theory of the acoustic noise generation from

isotropic turbulence.

In the numerical work discussed below, the turbulence in a small unbounded region relative to

the far-field observer as in Proudman's model, is assumed to have similar characteristics to those
existing within any given box in an infinitely periodic domain. The turbulent flow in this given

box is exposed to periodic boundary conditions unlike the boundary conditions which exist in the

unbounded domain. The assumption is made that the noise generated within the given box can

be considered in isolation of the remainder of the periodic domain and propagates its noise to the

far-field observer as if the rest of the periodic domain were absent and replaced by fluid at rest of

ambient density and speed of sound. The noise generated near the boundaries of the periodic box

is not considered since the assumption is made that the turbulence in the vicinity of the boundaries

meets the requirements specified above. Now numerous previous works using (DNS) have shown

3



that the overall characteristics of the turbulence, including the kinetic energy, K, and the dissipa-

tion rate, e, in such a periodic box closely resemble those determined experimentally provided the

integral scale, L, is small compared with the overall dimensions of the given box, D. However the

Reynolds number of the turbulence is strictly limited in (DNS) to low Reynolds numbers, and thus

the comparisons with the results of Proudman will be limited only to those cases where the integral

scale, L, greatly exceeds the Taylor microscaie, ),. We discuss below the problem that exists in

the numerical simulations when the integral scale, L, is not sufficiently small compared with the

computational box of side, D, to have no measurable effect on the longitudinal velocity correlation

function, /. Such modifications to f are sufficient to change the characteristics of the computed

acoustic power generated by the turbulence, and show, in aeroacoustics, that the demands on good

spatial resolution in all length scales in (DNS) are more extreme, than in the corresponding calcu-

lations of the global statistical properties of the turbulence.

2.The Proudman model

Proudman finds, from Lighthill's Theory of Aerodynamic Noise, that the intensity of the radiated

sound at a very large distance from an unbounded but finite domain of isotropic turbulence when

the Mach number is small and the speed of sound in the turbulence is equal to its value in the

ambient environment outside the turbulent flow, can be written

l(e, t) - Poo 02 u2"- 02 (2.1)

where ux is the turbulent velocity component in the direction between the source and the observer.

Here the component of the Lighthill stress tensor, Tij, in the direction from source to observer,
2has been assumed equal to poo(u_- < u2z >), and in the above integral the fluctuations of u x

about its local mean value during the decay are implied, poo and coo are the constant density and

speed of sound throughout the turbulent flow and in the radiation domain outside it. The retarded

times at A and B are respectively, rA = t - ] z - y ]�coo, and rB = t - ] z - z ]/coo. Proudman

reduces the second-order space time covariance of Tij to a series of second order velocity covari-

ances on the assumption that in isotropic turbulence the velocity at two separated points in space

has a normal joint probability distribution. Proudman also invokes the Navier-Stokes equations

to convert pressure covariances into functions of the velocity covariances as well as reducing the

time gradient of the velocity covariances to spatial gradients of the two-point longitudinal velocity

correlation function, f(r, t). Finally the Tij covariance is evaluated for two different forms of the

self-preserving function, f(r/L(t)), where the integral length scale, L, is a function of time, and

this in turn determines the value of the Proudman constant, a, in Equation(1.3) above.

In Proudman's high Reynolds number model it is assumed that for isotropic turbulence in near

incompressible flow the effects of retarded time in the evaluation of the two-point covariance of

02TG/c3t 2 can be neglected. This approximation is used throughout the analysis and, in particu-

lar, with the reduction of the above two-point covariance into the sum of covariances of the time

derivatives of the velocity components. But a time derivative at a point A inside the turbulence

differs from the time derivative at a point B and even though the differences are small they are

not negligible as can be shown in the following analysis.

4



Wefind that the covarianceof (Tij)tt betweenthe two points A and B at times t A and t B

respectively, where the aligned velocity components are, writing u for ux, u = u A and u' = u B

respectively, and the density is assumed constant and equal to unity, is given by the scalar function,

U,

u =< o--_(u_- < u2 >) (u_- < u2>) >, (2.2)

since in isotropic turbulence < u 2 > = < u_4 > = < u_ >. Now covariances in isotropic turbulence

are normally evaluated in terms of the velocity components, ui, and their derivatives at A and B,

whereas Ti./ involves the quadratic components, uiuj. Thus we need to expand the derivatives in

equation (2.2). Using the notation (Ou/OtA) 2 equals ut2A, and similarly with respect to the other

terms, and with UA = u, and UB = u', it follows that:

u = 4(< (u,.)_(._B)2 > - < (.,A)2>< (._B)2> + < (u,A)2.,_,_ > _

! !< (u,A)2><..,_,. > + < ..,.,.(u_B) _> - < .u,.,. >< (u',_)_ > +

< ..,.,_.'._.,. > - < _.,.,. >< .'u_.,B >), (2.3)
which involves a set of both fourth and second-order covariances. Proudman used a similar no-

tation, except t = tA = tB was introduced throughout. Equations(2.2) and (2.3) are the starting

points for both the analysis in this section and in the work of Proudman(1952).

Following the work of Batchelor(1951) and Proudman(1952) we assume the joint probability
distribution between the velocities at A and B is normal and so the fourth-order covariances may

be replaced with second-order covariances in pq and p'q' using the MiUionshtchikov relations :

< (Pq)A(P'q')B >=< Pq >< P'q' > + < PP' >< qq' > + < Pq' >< qP' > • (2.4)

Thus we find that:

U = 8 < u, Au'tB >2 +4 < uu' >< u**t,,u_Bt B > +4 < UU_BtB >< U'UtAt, > +

, . (2.5)8 < UU_B >< UtataUtB 7> +8 ( UtaU t >( UtaUttstB >

This equation differs from that given by Proudman(1952) for reasons that will be discussed below,

in this section, and also in Appendix 3. It involves only products of two-point second-order velocity

covariances. In order to clarify the further reduction of this formula we will use a different but

more compact notation.

Let A and B be the points with coordinates y and z respectively, with source times tA and tB

respectively. With this notation we find:

U = 8S2AB + 4RAsTAB + 4111+ 8(V2 + V3) (2.6)

5



where,sinceUA is a constant when differentiating with respect to tB and UB is a constant when

differentiating with respect to tA,

RAB =< UA'UB > • (2.7a)

OUA OUB 02RAB

CAB =< OtA OtB >= OtAOt--------B" (2.7b)

02UA 02UB 04RAB

TAB=< Ot2A Ot2B >= i)t2AOt2B. (2.7c)

02_tB 02UA

v, =<.A " >< 0-- A>=-
02 R AB 02 R AB

Ot_ O----t_ (2.7d)

Ot_B OUB 02BA ORAB 03RAB

V2 =< UA-_B >< OtB Ot2A >= OrB OtBOt2A " (2.7e)

OUA OUA 02UB ORAB 03RAB

V3 =< UB-_A >< OtA Ot2B >= OtA OtaOt_B " (2.7f)

In the case of stationary turbulent flow RAB is dependent on r = tB - tA only and then

04RAB .ORAB 03RAB )U = 12(02RAB )2 + 4RAB-- + 16( -_rOr------_-- Or4 _r 3 "

The corresponding result from Proudman's analysis, as shown in Appendix 3, is

(2.8)

U = 9( O_RAB )_ 04RAB .ORAB 03RAB _ (2.9)
Ot-------T- + 4RAB Ot----T--+ 4( _ _-g ,,

where although the same terms arise the numerical coefficients are different from those in Equation

(2.8). The difference between the two analyses lies simply in that Proudman has put ta = ts = t

at the start of the analysis , whereas in our analysis we have introduced this approximation at the

end. To that extent both treatments are approximate, but we contend that our present analysis is

more justifiable than the earlier approximation introduced by Proudman. The differences involved

are presented and discussed at greater length in Appendix 3. In Proudman's work t is the source

time and includes both the effects of the decay time and the temporal fluctuations between A and

B in deriving Equation(2.9). If, like Proudman(1952), we neglect retarded times, then t = tA = tB,

and Equation(2.8) remains unchanged except 7- must be replaced by t. The general expressions for

U, as given in Appendix 3, show greater differences. With the general expression for U we can find

the separate effects of time during the decay and time separation effects between tA and tB.

If we now evaluate the value of the Proudman constant, _, following the method used by Proud-

man(1952), but using Equation(2.8) in place of Equation(2.9) we find, as given in Appendix 3, for

the case when the two-point longitudinal velocity correlation function f(r/L) = exp(-rr_/4L2),

that a = 10.96, compared with Proudman's result _ = 13.5, for this same correlation function. (In

a recent revised calculation of a, based exactly on the same formula used by Proudman, we find

a = 12.5.)



3. A Simplified Model.

An alternative, and simpler form, can be obtained for the Tij covariance and its second time

derivative when the turbulence is pseudo-stationary. In such a case we can write the intensity of

the radiated sound as follows:

I(x, t) - Poo 04
16_c,c_x2 J// dY /// dr-_r4P'_:,_:_:( y'r'r)'

(3.1)

and from this we can find the total radiated acoustic power output per unit volume of turbulence.

Here P_x,_ is the space-time covariance of (T_x- < T_ >), with p replaced by its approximately

constant value poo, and which, in isotropic turbulence, is independent of the position y inside

the flow. To our approximation, as discussed above, the Tx_ covariance is reduced to that of

2 >). We assume that P_,_, beyond certain values of I r ] and r, is a decreasing
function of the separation distance r and the retarded time separation r, and falls to zero in a

distance small compared with the dimensions of the assumed large turbulence volume. In the

general case of decaying isotropic turbulence, it is also a function of the time, t, during the decay

period, since < u 2 >, and the integral length scale of the turbulence, L, must both depend on t.

We assume that a physically possible form for P_,xx at sufficiently high Reynolds numbers is the

self-preserving function

P_x,x_: = (3.2)

with the non-dimensionai space correlation function, _(r/l), and the non-dimensional retarded

time correlation function, _(_r) being chosen so that the dominant portions of the spectra of the

velocity fluctuations are adequately resolved. Here u, l, and Fl are respectively reference values of

the turbulent velocity, the turbulent length scale, and turbulent frequency, and, in general are all

functions of time during the period of decay. In stationary turbulence they are constants. Currently

there is little experimental evidence to provide a guide for a suitable correlation function in both

space and time, due to the technical difficulties in measuring the fourth-order velocity covariance

and both the fluctuating pressures and densities involved in T,j in any flow field, and in particular

in isotropic turbulence. (However guidance as to appropriate functionai forms for • and _ can be

obtained by considering the similar functions relating to the two-point velocity covariances.) We do

not suggest that the self-preserving relation given in Equation(3.2), using a separation of variables,

is the most general or only possible form for Px_,_, even in the case, as considered here, when the

turbulence is assumed self-preserving.

The introduction of a self-preserving and separation of variables form for Pxz,x, implies that

it would be most applicable in a domain where one type of flow prevails. This would be possible

in either of the limits of very low or very high turbulent Reynolds numbers. Here we prefer to
consider only the case of very high turbulent Reynolds numbers. We therefore assume that this

type of flow holds throughout the complete spatial domain during the total decay of the isotropic

turbulence, where the energy containing length scales of order, l, are very large compared with the

Taylor microscale eddies of order, A. The decomposition of the far-field sound intensity into its

spectral components and the corresponding decomposition of the equivalent acoustic source func-

tion, Px,,**, into its wave-number components, k, and frequency, w, suggests an independence of
wave-number and frequency and correspondingly an independence of space and time in the char-

acteristics of Pxx,_,. An independence principle of the space and time characteristics of P_,_



corresponds to the approximation involving a separation of variables as given by Equation(3.2). Of

course such independence is artificial in the acoustics problem since we have a coupling condition

between frequency and wave-number for sound waves in the domain outside the turbulence, and a

corresponding matching relationship exists between the wave-number and frequency components in

the four-dimensional Fourier transform of Pxx,xx, which we write in the form, P(k,w), as given in

Appendix(4) below. Correspondingly we see that the space-time covariance is connected through

the far-field retarded time relation t* = r + k.r/w, where t* is the autocorrelation time separa-

tion at the observer. Thus, by reference to Equation(3.1), we see that for each value of the space

separation we need the fourth time derivative of P**,** evaluated at r = t* - k.r/w. The contribu-

tion to the far-field intensity, and hence the total acoustic power, involves the volume integration

of the fourth-order covariance, 04P,_:,::_/Or 4 over all values of r. Since the elemental volume is,

r 2 sin 6dOdCdr, we find that the integrand peaks at a value of r distant from r = 0. At r = 0 its

value is zero. A simple example shows that near the peak in the integrand we have values of r of

order the length scale of the energy containing eddies, and the fourth time derivative, taken at this

value of r at r = t* - k.r/ca, will also be related to times involving the energy containing eddies.

Thus from an inspection of the four-dimensional mapping of P**,,_ in the space-time domain we

find its dominant contribution to the integrand in Equation(3.1.) centres on a peak at a distance, r,

of order l, and a time, r, of order 1/fl = l/u with respect to the origin. Hence in the modelling of

this dominant contribution to the total acoustic power we find it is possible, as suggested above, to

reduce the space-time covariance to the product of the separate space and time covariances. If for

any reason the integrand in Equation(3.1) had peaked near r = 0, such a separation of variables

would have been physically less acceptable, but then the space-time interaction would have involved

a major contribution from small scale turbulence in that domain. At high Reynolds numbers in

unbounded domains such as are being considered here, the dominant contribution to the generation

of sound from a turbulent flow arises, as found by Lighthill(1952), from the dynamics of the highly

energetic parts of the turbulent motion, namely the energy containing scales.

In the region of final decay in isotropic turbulence, where inertial effects are small and can

be neglected, it is known, for this domain of low turbulent Reynolds numbers, that the simul-

taneous two-point longitudinal velocity correlation function is f(r,t) = exp(-r2/8vt), which in

self-preserving flow becomes, f(r,t) = exp(-r 2/2)_2), where _, the Taylor microscale, is a function

of time. At earlier times in the decay, f(r/L) = exp(-r/L), except at small and very large spatial

separations, where f(r/L) = exp(-c(r/L)2), with c a constant, and is found to approximate to the

function as measured experimentally at higher turbulent Reynolds numbers. We also note that in

the (DNS) results discussed in Section(5) the initial turbulent energy spectrum is given the distri-

bution k 4 exp(-2k2/k_) which corresponds to f(r/L) = exp(-r/4(r/L)2), km is the wave-number

at the peak in the energy spectrum. One of the forms used by Proudman(1952) for f(r/L) was

also equal to this latter function. Thus, arising from these observations, and noting P,_,:_, involves

the velocity squared covariance, we suggest that a possible form for the space covariance, #(r/l), is

exp(-2(r/l)2). (A better choice at high Reynolds numbers is possibly exp(-r/l) but this has the

disadvantage of not having finite curvature at r = 0, which is a necessary condition at all Reynolds

numbers since the dissipation range of wave-numbers and frequencies is finite. On balance the

choice of a Gaussian distribution function appears to be a better choice.) A first choice for the

temporal covariance _(flr) is made on similar assumptions and we put 9(fir) = exp(-Trfl2r2/2).

This function is however a very poor approximation to the temporal covariance at times greater

than zero where the corresponding turbulent frequency spectrum has a much richer population

in the higher frequencies arising from non-linear interactions. The spectrum corresponding to

_(f/r) = exp(-_r_2r_/2) does not capture the full amplitude of the higher frequencies, and the

8



(DNS)simulationsdiscussedbelow,showthedifferencesbetweenthe assumedandcalculatedspec-
tra. This form of 9(flr) doeshavethe merit, however,that it capturesthe characteristicsof the
lowerfrequenciesandnearthe peakfrequenciesin the spectrum.

SincedK/dt = -e holds throughout the decay and we assume the conditions for self preserving

flow remain throughout, we find K is proportional to t -1 . This, together with two important length

scales in the turbulence, defines the dynamic behaviour of the turbulence during the decay. These

length scales are l, the energy containing scale, and )_, the Taylor microscale, which is defined from

the dissipation function, e, with

U 2

= (3.3)

where v is the kinematic viscosity. ), is also defined in isotropic turbulence as the radius of curvature

of the scalar longitudinal velocity correlation function, f(r, t), at the origin, or

Thus even at high Reynolds numbers the longitudinal velocity correlation function, f(r), near r = 0,

is a function of Reynolds number, since its curvature there depends on _, and _ itself is a function

of Reynolds number. Away from the origin f(r) is a function of r/L where the integral length

scale is a measure of the scale of the energy containing eddies which are responsible for the bulk of

the noise generated from the turbulence at high enough Reynolds numbers. The time covariance

of the velocity, for any given spatial separation, has a smaller curvature near the origin, r _ 0,

than that of the corresponding spatial correlation as r ---* 0, since at high Reynolds numbers this

covariance has properties related to that of the pressure covariance, and hence depends on all scales

of turbulence. In this initial region, it cap be shown that both A and L increase with time pro-

portional to t 1/2. In the final period of decay, which is viscous dominated, _ continues to increase

proportional to t 1/2. However in this region we find L decreases with time proportional to t -1/4.

In the initial region, if the flow is self-preserving, we can use either _ or L as the characteristic

length in defining the similarity forms of the spatial correlation function, since 2 is proportional
to L. However since in the problem of sound radiation from isotropic turbulence it appears, at

high values of the Reynolds number and in the main period of decay, that the bulk of the noise is

found to originate from scales of turbulence only slightly smaller than those containing most of the

energy, we prefer to use l as the characteristic length scale in the turbulence throughout the decay.

In the recent study of Speziale and Bernard(1992), it is shown that the conditions for decaying

self-preserving isotropic turbulence are that K should be proportional to t -1 and R_ = u_/v is

equal to a constant throughout the decay, with the so-called asymptotic final period of decay, in

which K falls as t -5/2, only being reached as t ---*_. Thus in a domain of self-preserving isotropic

turbulence we see that RL = uL/v also remains constant throughout the entire region of decay,

with u decreasing as t -1/2 and both _ and L increasing as t 1/_. The initial conditions must be

such that the flow field is initially isotropic at a sufficiently high Reynolds number, RL. The value

of the constant asymptotic Reynolds number, R_, depends critically on its initial joint probability

distribution and in particular its velocity derivative flatness and skewness. In most experiments on

the decay of isotropic turbulence the turbulence is not fully self-preserving and K falls close to t -s,
where s = 1.24 to 1.34 rather than the t -1 as found in self-preserving isotropic turbulence. This is



alsothecasein the(DNS) resultsaswill beshownbelow.Forfurtherdetailson thecharacteristics
of self-preservingisotropicturbulencerefer to Spezialeand Bernard(1992).Themaincharacteris-
tics of isotropic turbulencearelistedin Appendix1.

With thesefunctions(I),ql and f we find there are two parameters, 1 or L, and i), which we

relate respectively to the length scale and frequency of the energy containing eddies. Since we have

already introduced u as the characteristic velocity of the isotropic turbulence, which we have put

equal to the root mean square velocity in any direction, it follows, as described above, that we may

write, ST = i)L/u as the Strouhal number of the turbulence which we assume is independent of

space and time. In general we might expect ST to have a value of order unity. In the stationary

case, where K remains independent of time, the dominant time scale in the turbulence is l/l),
corresponding to that of the fluctuations of the energy containing scales. This time scale, which we

may refer to as an integral time scale, is also of order L/u, giving, as stated above, a value for ST of

order unity. In this case u, L and i) are all independent of time. When the turbulence is decaying

there are now two time scales, 1/i) and that associated with the time scale of the decay, which we

call, tD, and is the time for the initial values of K0 and e0 to fall to their vanishingly small values

at the end of the decay. Such a time tn is clearly of order Ko/eo, and we put tD = Ko/eo, say. If

then we write _0 = 1/tD we find l)0 = wo/_o, where wo is the initial rms vorticity, and RLo

is the initial Reynolds number. Thus when RLo is very large i)0 is very small, and i)o < uo/Lo.

Thus we find tD is a long time scale. (At t = 0 we find that % # 3/2u_/Lo, its equilibrium value.)

Hence at all times beyond the initialization regime, where the turbulence is readjusting itself from

its initially imposed conditions at time t = 0, we find the time scale of the dominant fluctuations

in the turbulence is the short time scale, ts = 1/_ = L/u, with ts << tD. However for small

values of the initial Reynolds number, RLo, we fail to obtain a time during the decay when a large

separation exists between ts and tD, moreover i) and i)0 are of similar orders of magnitude. At

high Reynolds numbers i) >> i)o. In this section we assume the Reynolds number is sufficiently high

so that in both the stationary and non-stationary cases _ >> i)0, except during the short initial

period following the commencement of the decay. Then, as stated above the integral time scale ts

is of order L/u and the turbulent Strouhal number, ST = 1.

However in the (DNS) simulations of Sarkar et a1(1993), which are discussed in Section(5) be-

low, the Reynolds number is not large and i) and fl0 are of similar orders of magnitude. It has thus

proved difficult to extract, from the databank of these simulations, definitive Values for ft. However

in these results we find to a good approximation, at about half the initial eddy turnover time, that

a good value for the turbulent Strouhal number is ST = 1. In the case of the (DNS) simulations

by Dubois(1993) using forced turbulence, the values of K and _ remain almost constant for a large

part of the decay and for all practical purposes the turbulence may be regarded as stationary.

But in that case also it has proved difficult to find values of the integral time scale, and hence fl,

since at large separation distances and times the Tii covariance is adversely affected by the forcing

amplitude, and therefore produces a contamination on both the integral length and time scales.

These results are discussed in detail in Section(5) below.

For the reasons discussed above the space-time correlation function may be written:

with its four-dimensionai wave-number/frequency spectrum function:

(3.5)
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47t-4_/4 exp 2_rgl2C , (3.6)

and with the acoustic power spectral density, as found in Appendix 4,

Coo

(3.7)

2 2 2where C = 1 + STU /coo, and showing a peak in the acoustic power spectrum at a frequency

wm= V_. At low Mach numbers, where u/co_ is small, C has a value of near unity. With this

wave-number/frequency spectrum function the total radiated acoustic power per unit volume of

turbulence is:

P°°u3L4 °°w4exp -_C dw
ps- _r2C_ST

3r P_SSruS (3.8)
- v_Lc_CS/2"

Throughout we have assumed that the characteristic length scale of the of the Tzz covariance is

approximately equal to the scale of the energy containing eddies, L.

This result makes no approximations with respect to the retarded time differences, but its value

depends critica£1y on the distributions chosen for (b and ffJ in Pzz,_x, and the value of the reference

turbulent Strouhal number, ST. If ST is given the value 1.25 then the value of the Proudman

constant, a, as defined in Equation(1.3), is equal to 16.26, but if ST = 1 then a = 6.66. The results

from Proudman's model give numerically similar results with c_ in the range 13.5 to 37.5 depending

on the chosen form for f(r/L). In fact Proudman refers to values of c_ as order of magnitude values

only, since unless f(r/L) is known for the given flow any inaccuracy in f(r/L) is also reflected in the

value of o_. Our experience is that small changes in f(r/L) generate large changes in the Proudman

constant, a. We found in Section 2, for the case of stationary flow, when f(r/L) = exp(-rr2/4L2),

10"96p_u8 (3.10)
P_ = Lc_ '

or a = 10.96.

If we had assumed space and time covariances were proportional to exponential functions we

would have found that the noise generated would have over-emphasized the contributions from the

eddies of length scales of the order of the Taylor microscale. The resulting noise would have been

of very high frequency. But as stated abdve, it is our contention, that the small eddies controlling

the space-time covariance near the origin of the space and time separations, do not control the

dominant regions of the space-time covariance contributing most to the generation of noise at high

turbulent Reynolds numbers. This region is displaced from the origin and is centered more towards

those eddies containing most of the energy in the turbulence. Thus in choosing empirical functions

for the non-dimensional correlation functions in space and time we concentrate only on functions

which provide an adequate representation of the space-time covariance at distances of order L and

times of order 1/_ and which vanish at large separation distances and times. But most important

11



of all wechoosea space-timecovariancewhich is a function of r/L and fir only,with L and _'/

constant in a stationary turbulent flow, and functions of time in non-stationary turbulent flows,

and which are independent of the flow Reynolds number above high enough Reynolds numbers.

In non-stationary self-preserving flows both L/u and 1/_/increase linearly with time giving ST

= a constant, which we put equal to unity. Definitive values for ST have yet to be determined.

Our final values for the Proudman constant, a, are independent of Reynolds number but remain

sensitive to the turbulent Strouhal number, ST, which is a parameter which must be determined

from experiment or from further (DNS) or (LES) simulations. It seems, however, unlikely that we

will be able to construct an experiment from which ST will be found experimentally. A guide to

the selection of results from the numerical simulations in respect of the Reynolds numbers of the

Taylor microscale, R_, and the integral scales, RL, can be found in Table 3, along with the ratios

of the various turbulent length scales and turbulent frequencies. The decay laws for self-preserving

isotropic decaying turbulence are presented, as stated above, in Appendix 1 and listed in Tables 1
and 2.

If we model the acoustic spectrum as found in the (DNS) results of Sarkar et al(1993) we find, as

shown in Figure(I), that the measured spectrum increases approximately as w 2 in the low frequen-

cies and falls as w -2 in the high frequencies before falling rapidly in the dissipation range. However

due to the dependence of the temporal covariance on 04/c9r 4 the spectrum must increase as w 4 at

very low frequencies. A simple analytic expression, which satisfies this low frequency condition and

fits the measured results up to the high frequency 'dissipation cut-off', is w4/(1 + w2/4Ft2) 3, cor-

responding to the temporal covariance (1 + 2_r + 4/3_2r 2) exp(--2_V). The comparison between

the (DNS) results and the model expression for the acoustic spectrum is shown in Figure(2) and

the corresponding temporal part of the T,x covariance is shown in Figure(3). Figure(a) also shows

the comparison with the DNS results of Dubois(1993). These are discussed in Section(5) below.

Figure(4) shows the comparison between the (DNS) spectrum and that found using the Gaussian

approximation for the temporal covariance as given in Figure(5). Although the Gaussian approx-

imation fits the peak in the spectrum it under-predicts at both the low and high frequencies. A

comparison between Figures(2) and (4) shows the improvement in agreement with the DNS results

using the 1/w 2 law at frequencies greater than the peak frequency. The corresponding changes

in the temporal part of the T:_, covariance are shown in Figures(3) and (5), for the 1/w 2 and the

Gaussian laws respectively. A much greater difference can be seen in the fourth time derivatives of

these covariances as shown in Figures(6) and (7) for the Gaussian and 1/w 2 laws respectively. In

both cases, and indeed for all covariances, the integral over all time separations is zero. Again we

see large differences in their behaviour near the origin, the Gaussian being well-rounded whereas the

1/,;2 is very spikey. The total acoustic power using the Gaussian time covariance was found above

from Equation(3.9), and resulted in a Proudman constant, a = 5.32, when the turbulent Strouhal

number, ST = 1.0. For the 1/w 2 spectrum function, with no truncation at high frequencies in the

dissipation range, the value of a = 6.26 for a Strouhal Number, ST = 1.0, and a = 15.29 for a

Strouhal number, ST = i.25.= The importance of the turbulent Strouhal number in determining the

value of the Proudman constant is thus obvious and hence the results obtained from this section

must be regarded as very approximate, except where independent data on the values of the turbu-

lent Strouhal number, the longitudinal velocity correlation function and the acoustic spectrum are

available for calibration. The detailed discussion of the (DNS) results is given in Section(5) below,

where further comparison is given between the results obtained in this section together with the

results found in the next section.
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4. The Direct Evaluation of the Total Acoustic Power

using the Lighthill Relationship.

Proudman finds, from Lighthill's Theory of Aerodynamic Noise(t952), that the intensity of the

radiated sound at a very large distance from an unbounded but finite domain of isotropic turbulence

when the Mach number is small and the speed of sound in the turbulence is equal to its value in

the ambient environment outside the turbulent flow, can be written

I(x,t) = Poo ff/ fff 022 O0_r_16_2cLx2 dy dz < -5-:F-2u_(V' rA)or_ u_(z, re) >, (4.1)

where ux is the instantaneous turbulent velocity component in the direction between the source and

the observer. Here the component of the Lighthill stress tensor, Tij, in the direction from source

to observer has been assumed equal to poo(u_- < u 2 >), and in the above integral the fluctuations

of u_ about its local mean value during the decay are implied, p_ and coo are the constant density
and speed of sound throughout the turbulent flow and in the radiation domain outside it. 1 The

retarded times at A and B are respectively, TA = t -- ] X -- y [/e_, and VB = t -- I x -- z ]/c_. We

base our prediction on the direct evaluation of the fourth-order covariance and not on its reduction

to the sum of products of corresponding second order covariances based on Gaussian statistics, as

assumed in Proudman's work. In the radiated sound field, the total sound power per unit volume

is given by

_ P_ (4.2)
P" 4rc_///Udr'

where the equivalent acoustic source function, U, is given by

u =< (_i- < _i >) (_- < u_ >) >. (4.3)

and UA and uB are the components of the velocity at A and B respectively in the direction of

the far-field observer at x. In the case of decaying isotropic turbulence in near incompressible

flow at high Reynolds numbers, we may assume that, at any time in the decay, the turbulence is

pseudo-stationary. Noting also that the operations of averaging and differentiating permute with

quantities at B being treated as constants when differentiating with respect to XA, and rA, and

similarly with respect to quantities at A,

(_4
2 2 u 2 (4.4)U - 0r 4 < (UAUS-- < >2) >,

where we define the effective retarded time, t - x/c_ = (VA + rB)/2, the retarded time separation,

2 2
v = (rB-rA), and < u24 >=< u_ >=< u 2 > is a function oft only. Also < UAUB > is a

1The changes in the analysis to include turbulent gases of different density and temperature from that in the

ambient medium can be introduced, but then the complete form of T,._ must be used, and not the approximation

made in deriving Equation(4.1).
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functionof r, r and t. The retarded time separation at the source points can be chosen to find the

autocorrelation of the far-field sound intensity, and similarly for the acoustic power.

If (U_)A and (uj)B are the general components of the velocity uA and uB respectively, then

writing i = j = 1 -- x we find < ((uz)_(u:_)2B > -- < (u_)_ >< (ux)_ >) > can be derived from the

general form of the fourth-order isotropic tensor as given by Batchelor(1953). Thus, omitting the

dependences on time for convenience only, and writing rl for the resolved part of r in the direction

of X,

2 2 u 2 A(r)r 4 B(r)rl 2 C(r) (4.5)Pxx,x_(r) =< (uAus-- < >2) >= + +

where the longitudinal velocity squared covariance

(up(x)2Up(X + r)2)_ < (up)2 >2= r4A(r) + r2B(r) + C(r), (4.6)

and the lateral velocity squared covariance

+ < (..)" >"= (4.7)

When the turbulence follows Gaussian statistics, as assumed by Proudman(1952), the universal

functions A(r), B(r) and C(r) for the fourth-order velocity squared covariances are related to the

corresponding functions for the second order velocity covariances, f(r) and g(r), where

up(X)Up(X + r) = u2 f(r) (4.8)

and

+ r) = u"g(r). (4.9)

LighthiU(1992) has shown more generally that the fourth-order longitudinai velocity covariance can

be replaced by the square of the corresponding second order covariance giving

(up(x)2Up(X+ r)2_ < u 2 >2= (Up(X)up(x + r)) 2 _--ff- 1 , (4.10)

and a similar relation holds for the fourth-order lateral covariance by replacing the suffix, p, by

the suffix, n. The relationship between the respective fourth and second-order covariances holds

for the given time t and the difference time r. The velocity flatness factor, T1 = u-_/u -5-2 has the

value 3 in Gaussian statistics, and is found by Townsend(1956) to be nearly 3 in decaying isotropic

turbulence. A similar result was obtained in the (DNS) results of Sarkar and Hussaini(1993) and

Dubois(1993) as presented below. However the joint probability distribution function for the ve-

locity squared at two separated points and for its second time derivative might be expected to
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be non-Gaussian and the preliminary results from the above (DNS) results indicate that T1 in the

above formulation should have a value slightly less than 3. However for the purpose of this paper we

will use the value 7'1 equal to 3 in deriving values of the Proudman constant given below. When the

joint probability function is Gaussian, Lighthill's relation reduces to Millionshtchikov's hypothesis

as given by Batchelor(1953).

and

From these results obtained from the Lighthill relationship we find

raA(r) + r2B(r) = (T1 - 1) < u 2 >2 (f(r)2_g(r)2), (4.111

density is

///Poo exp(-ik.r)dr
ps@)- 8r2c oo

and with Equation(17) for U we find, with k =[ k l,

peo6o4 oo _

If

exp(-iwr)U(r,O : r,t)dv

sin Ocos(kr cos O)P_z,x_:(r, O: r, t)dO.

_0 7_
I1 (kr) = sin 0 cos(kr cos O) cos 4 OdO,

15

(4.16)

(4.17)

C(r) = (T1 - 1) < u 2 > g(r) 2. (4.12)

Noting the points A and B are separated by the vector distance r, which is in a direction at angle

0 to the propagation direction x, we find from Equation(8), together with Equations(4.10),(4.111

and (4.12),

P_:z,zx(r,r,t)=(Tl-1)<u2> 2 (f(r,r)cos20+g(r,T)sin20) 2 , (4.13/

with the effective acoustic source function

04

U = -_v4P_,x_(r,v,O). (4.141

In nonstationary turbulence u 2, T1, f and g are also functions of the time t.

If the autocorrelation time difference in the far-field at x is t*, then its relation to the retarded

time difference in the source region, v, is

wt* = wr + k.r, (4.151

where the wave-number vector in the turbulence is k = -w_/(xcoo) • Hence the power spectral



f0 r
I2(kr) = sin 0 cos(kr cos 0) cos 2 0 sin 20dO,

and

I"Ia(kr) -- sin 0 cos(kr cos 0) sin 40dO,

then with Equation(4.13) for P._,_x, the power spectral density becomes

poo,_4 < u2 >_ (T, - 1) [oo
p,(w)

2_rc_ Jo

noting f and g are functions of r, r and t only.

coswr(Ilf 2 + 212fg + I3g2)dr, (18)

In our problem of near incompressible flow, the turbulent Mach number is very small, and in

this case we may assume that the modulus of the wave-number k in the turbulence is small and

the dependence of/1,/2,/3 and ps on k can then be neglected. We then find the integrals for/1,

/2 and/3 become respectively 2/5, 4/15, and 16/15. Equation(4.18) now takes the simpler form

]0 f0ps(w) = Pc_W4 < u2 >2 (7"1 - 1) r2dr coswv(3f 2 + 4fg + 8g2)dv.
15rc_

(4.19)

The more general case when k is not small requires the values of I1,/2 and Is given by

(sin kr cos kr sin kr cos kr sinkrX
Ii(kr)=2_+4(kr) 2 12_-_ 24-_-_ + 24 _--) , (4.20)

/" cos kr sin kr cos kr sin kr

I2(kr) = 2 _-2-_- + 10 (-_r)3 + 24 (kr) 4 24 (--_r)5) , (4.21)

/" sin kr cos kr sin kr\

I3(kr) = 2 _-8_'_5 24 (--_r)4 + 24_--) .
(4.22)

Now the relation between f(r, r, t) and g(r, r, t) in isotropic turbulence must satisfy the equation

of continuity, and as shown by Batchelor(1953),

9(,', T,t) ---f(,., _-,t) +
r O/(r, _-,t)
2 Or

(4.23)

It follows that since f_(3r2f 2 + 2r3fOf/Or)dr = f_o O(r3f2)/Ordr = O,
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fo fo°°r2(3f2+4fg+Sgbdr=2 r'(Of   Or/dr,

and then Equation(4.19) becomes

ps(w) = PooW4 < U2 >2 (Tl -1) 2 fo °° fo °°c_ 15_r coswrdr r 4 (Of_ 2\Or] dr. (4.24)

The fact that a significant part of the equivalent acoustic source function, r2(3f 2 + 4 fg + 8g2),

integrates to zero for all values of f has important consequences for the generation of noise from

turbulent flows.

In many cases we require the complete acoustic source distribution function, r2(3f 2+4fg + 8g2),

which includes that portion which, on integration over all values of r, makes zero contribution to

the acoustic power. The complete acoustic source function as well as its positive only contribution

to the acoustic power are given in the examples below. We see that the power spectral density,

p,(w), as given by Equation(4.24), has its dominant contribution far removed from the origins of

r and r, where the longitudinal velocity correlation function has its maximum value. This reflects

on the poor efficiency of the conversion of the flow kinetic energy into acoustic energy, since away

from the origins of r and r, the magnitude of the function Of fOr will be extremely small. We
are reminded that our result is based on the assumption of pseudo-stationary turbulent flow. In

decaying isotropic turbulence the local characteristic velocity, u = V_ u 2 >, the length scale, L,

and the time scale, 1/f_, are all functions of the decay time.

We cannot proceed without introducing a distribution for f(r, 7-,t). We noted that the integral

in Equation(4.24) is dominated by the values of the integrand at r and v away from the origin,

and where f(r, 7",t) is a very small quantity. Thus we may assume, to a good approximation as

discussed in Section(3) above, the distributions of r and r are independent, so that

r 2

f2(r, r,t) = ¢(f_r) exp(--_T_), (4.2s)

where L = f_o f(r, 0, t)dr is the local integral scale and £ is the local reference frequency, propor-

tional to the peak frequency in the turbulence. Both L and f/are functions of time in the case of

turbulent decay. In the stationary case they are constants. The distribution assumed for f(r, r, t)

in Equation(4.25) is its self-preserving form, which is independent of time during the decay. The

change in the longitudinal velocity correlation function during the decay is dependent on the vari-
ations of L and f_ with time. We find it convenient to define, as above, the characteristic velocity

in the turbulence as u = _-< u 2 >, and the reference Strouhal number as ST = _2L/u, which we

assume is constant throughout the turbulence and is independent of time throughout the decay.

The time separation dependence in the two-point velocity space-time scalar function, f(r, r, t) has

been chosen to establish a far-field noise spectrum proportional to w4/(1 + (w/f_)2/4)3. Such a

spectrum function, already discussed in Section(3) above and shown in Figure(2), is found to be

similar to the acoustic spectrum as found in the (DNS) results. The frequency at the peak in the

noise spectrum, w,_, is vf8£. The (DNS) results are also plotted in Figure(l), where it is shown
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the spectrum changes from nearly w 2 at low frequencies to m-2 at high frequencies. However since

the total acoustic power is proportional to the fourth time derivative of T_=_:we have chosen the low

frequency dependence proportional to v4 rather than v2. The corresponding temporal covariance

is shown in Figure(3) with the (DNS) results of Dubois(1993). The frequency at the peak in the

acoustic spectrum is slightly greater than that corresponding to the turbulent energy spectrum.

Thus the eddies responsible for the dominant contribution of the acoustic spectrum are slightly

smaller in scale than the energy containing eddies.

Hence the total acoustic power is found by integrating Equation(4.24) over all values of the

frequency, _. If we put f(r, O, t) = f(x) = exp(-rX2/4), where X = r/L, then the result is

32T u's oo ( df :
P'(t) = "i--5( 1--1)C---_ L J_o X4 \dx] dx. (4.26)

Thus the value of the Proudman constant, a, in

p,(t) = , P°°us (4.27)
Lc_ '

is

We find

and finally

32 ff /df a = ]-_(T, - 1)S,_ X 4 dx. (4.28)\dx/

// ()X4 df 2 15
-_X dX - 4V/2r - 0.8440, (4.29)

t_ = 1.80(/1- 1)S_., (4.30)

which is the important result obtained from this section.

Thus the Proudman Constant, _, depends on the flatness factor, T1 and the fourth power of the
turbulent Strouhal number, ST.

It also confirms that the source of the acoustic power, which is proportional to the fourth time

derivative of the retarded time covariance of Tx_:, is positive for all values of r and r. However as

noted above this is mainly due to a large part of the volume integral of the Txz covariance being

exactly zero. The spatial correlation volume of the equivalent acoustic source depends on (if)2, and

is equal to 0.8440L 3 as shown in Equation(4.29). As expected the equivalent correlation length,

0.945L, is slightly smaller than the scale of the energy containing eddies. The peak in the acoustic
source distribution function occurs at X = 1.3820.
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Whenthe Strouhalnumberof the turbulence,ST = 1.25 we find that a = 4.4(T1 - 1) and when

the flatness factor, T1 = 3 as found in the (DNS) results discussed below, then a = 8.8. Clearly

the value of (_ depends on ST, and although we know ST is of order unity, its value cannot be

determined from our analysis. When ST -- 1 and 711 = 3 we find a = 3.6. If f(r/L) = exp(-r/L)

in place of f(r/L) = exp(-Trr2/4L2), covering possibly the range of likely distributions between low

and high Reynolds numbers, then with these same values of ST and T1 the value of a = 3.2. Thus

all we can say here is that, covering the range of low to high Reynolds numbers, a is likely to be

in the range 3 to 9, provided ST is in the range 1 to 1.25. These values of a are in close agreement

with those given by Proudman(1952) if ST has a value of around 1.25. This applies also to our

re-calculation of those results and in a revised analysis, in which the retarded-time is not neglected

until the conclusion of the analysis, as shown in Section(2). The lower value of a also equals the

same order of magnitude as that obtained from the (DNS) simulations, as shown below, provided ST

has the value unity. When this investigation was started it was assumed that one of the outcomes

would have been that the (DNS) results would provide a calibration for the turbulent Strouhal

number, ST. This remains a possibility although first it is necessary to establish that the (DNS)

results discussed below are an accurate guide to the evaluation of a at high Reynolds numbers and

that these simulations do not show any contamination resulting from any inadequate resolution in

both space and time of both large and sma]] scale motions. So far it has been possible to establish

that, as expected, ST has a value of order unity, and appears to have values in the range 1.0 to 1.25.

Now during the decay

dK
- E, (4.31)

dt

where the kinetic energy, K = 3 < u 2 > /2, and the rate of dissipation, e c(< u 2 >3/2 /L. If

we assume L(t) _ t n and < u 2 >o¢ t -s , then we find from the Eddy Damped Quasi-normal

Markovian(EDQNM) results of Lesieur(1990), that n = 0.31 and s = 1.38. If we use these results,

then the acoustic power, ps, falls as t -5's3, and is in fair agreement with the results of the (DNS)

simulations. Additionally we find that L/u (x t( 2_+s)/2 c( t for all values of s and n, and hence

decreases with time according to t -1. Thus the turbulent Strouhal number, ST, is independent of

time in the decay, consistant with the assumption made previously. In full self-preserving flow with

s = 1.0, and n = 0.5, we find ps falls as t -a'5. All these results apply when the velocity and the

velocity derivative flatness factors remain constant during the decay.

Before we leave this section we might reflect on the result had we completely ignored retarded

times in the evaluation of Equation(2.2). Then the sound power per unit volume would be given

by the simultaneous fourth time derivative of the fourth order velocity covariance, all evaluated at

the same time, t. However we define U as in Equation(2.3), but with r replaced by t since r has

been put equal to zero. In self-preserving flow we then find the time differentiation operates only

on the product of u4 and L 3, with the resuJt

ps(t) ---_ (T 1 -- 1/6C 5 dt 4 (?./,4L3) [ _4 d)c. (4.32)\dx/JO

From Equation(4.32) we find that the acoustic power output depends critically on the decay laws

for u and L, especially in the initial stages of the decay. But the result, as might have been expected
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sincethe random temporal characteristics of the turbulence are now ignored, gives a much lower

sound power than that given by Equation(4.30).

5. Comparison with the Direct Numerical Simulations(DNS) of

Isotropic Turbulence by Sarkar and Hussaini(1993),

and Dubois(1993).

The (DNS) results are presented here in some detail, with the permission of the authors, in order

to make a detailed comparison between the results and assumptions made in the simulations and

in the analysis presented in Section(2) above.

(i) The computational range.

These (DNS) results from the modelling of isotropic turbulence were performed for an initial Taylor

microscale Reynolds number, R_, of 65 and a Mach number, based on the root mean square of

the turbulent velocity, equal to 0.05. (The value of R_ quoted by Sarkar and Hussaini was 50,

but this was based on the turbulent velocity, q = 3v_ u 2 >, and _ = q/_-<w 2 > whereas we

define R_ based on _2 = 15v < u 2 > /e.) A 643 spatial grid was used with a time step At equal

to 0.00275(K/e)o. Twenty such simulations were performed and each simulation was conducted

up to t = (K/e)o, where (K/e)o is the initial eddy turnover time. During these simulations the

turbulence decayed and the Taylor microscale Reynolds number fell to values approaching 20 over

one initial eddy turnover time. The simulations were then stopped for with such low values of the

Taylor microscale Reynolds number the energy containing scales of the turbulence approach the

Taylor microscale, and the dynamics of the turbulence change markedly from its characteristics

associated with higher Reynolds numbers. At less than R_ = 48 approximately, the peak frequency

in the acoustic spectrum exceeds the frequency associated with the Taylor microscale eddies. Thus

for these simulations with the initial value of R_ = 65, we might expect the results to display some

characteristics for the acoustic power output different from the analytic results of Proudman and

the results given in this paper, which are based on the assumption of a high Reynolds number,

where the results are independent of Reynolds number. The explicit dependence on Reynolds num-

ber of the acoustic power output from isotropic turbulence is a subject that so far has not been

investigated, although it has frequently been assumed that for values of about RL > 1000, where

RL = uL/v, the variations with Reynolds number are likely to be small.

(ii) The variation of K, e and f(r/L) during the decay.

The results of Sarkar and Hussaini(1993) are plotted and compared with the theoretical results. Fig-

ure(8) shows the decay of turbulent kinetic energy as a function of non-dimensional time, t(E/K)o

and Figure(9) shows similar results for the dissipation function. It is found that the decay of tur-

bulent kinetic energy, in these simulations, follows t -1"3s except near the initial decay period. It is

also found that the dissipation function falls as t -2"3s except in the initial period of decay, where

it first increases rapidly to a maximum value and then falls. These results for non-dimensional

times greater than 0.4 are in agreement with (EDQNM) theory as presented by Lesieur(1990). The
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presentresultsof Sarkarand Hussaini(1993)for the decayof K/Ko and e/Co are similar to the

previous results of Herring et al(1973), for the same initial energy spectrum, but display different

values for the peak in the dissipation function. It is possible that the earlier results were much

less well resolved than the data obtained by Sarkar and Hussaini(1993). The present (DNS) results

also differ from the experiments of Comte-Bellot and Corrsin(1966) who found K o( t -1"26 and

Warhaft and Lumley(1978) who obtained K _ t -1"34. In fully self-preserving turbulence K _ t -_

and e _ t -2, with both _ and L being proportional to t 1/2. Figure(10) shows the fall in R_ with

time and again the agreement with the results from (EDQNM) theory is fair for times greater than

0.4. Figure(ll) shows the comparison between the (DNS) results and the experimental results of

Stewart and Townsend(1951) in grid turbulence, for the longitudinal velocity correlation function,

f(r/L). The latter results have been corrected to provide the expected distribution appropriate

to very high Reynolds numbers. No attempt has been made to make a similar correction to the

(DNS) data to allow for the effects of the low Reynolds number. Clearly the comparison is sen-
sitive to the value chosen for the integral length scale L. The (DNS) results provide values of

L = (3_r/4) of_(E(k)/k)dk/of_ ° E(k)dk as well as the component values Luu, Lvv and Lww. Since

the (DNS) results for f(r) at small values of r approximate to a Gaussian distribution, we find it
more convenient to select a value for L such that f(1) = 0.4559, since f(r/L) = exp(-_r/4(r/L) 2)

is a fair fit with the data in the region 0 < r/L < 1. This is the longitudinal velocity correlation

function for an unbounded flow in the initial stage of decay, when the initial energy spectrum

function, E(k) = k4exp(-2k2/k_). In most of the (DNS) results described here km= 6. In

the high Reynolds number experimental results of Stewart and Townsend f(r/L) __ exp(-r/L) in

0 < r/L < 1. The low Reynolds number (DNS) results are at variance with these experimental

results at separations r/L _< 1, and are notably smaller at larger separations. If the comparison

between the (DNS) results and experiment had been made at the same Reynolds number the agree-
ment between them would have been shown to be much closer. A feature of the (DNS) longitudinal

velocity correlation curve is the 'shallow bump' in the region of 3 < r/L < 4.5. At such large

spatial separations, the magnitude of the correlation function, f(r/L), is very small but not neg-

ligible. The corresponding transverse correlation function, g(r/L), is negative in this region. As

first noted by Townsend(1956) this feature of a 'shallow bump' at large spatial separations can,

in certain cases, be interpreted as the existence of a large scale structure in the turbulence having

a non-negligible fraction of the turbulent kinetic energy. Such structures, generally referred to as

regular or coherent structures, are a feature of turbulent shear flows, and are a direct result of the

flow boundary conditions. Experiments on grid turbulence do not show such features.

(iii) The variation of )_ and L during the decay.

Figure(12) shows for the 1283 simulation the variation of _2 with teo/Ko. The expected linear vari-

ation is found when 0.4 < (teo/Ko) <_ 0.8. The variation of Luu with time is shown in Figure(13).

The same figure shows the comparison of Lvv with L_o • The expected variation with time for

L_,,, in isotropic turbulence is found between non-dimensional times of 0.4 to 0.8, and in this same

window, Lvv = Lww. Here suffix uu denotes the longitudinal scale and vv and ww denote the trans-

verse scales. But in unbounded turbulence we expect L_,, = 2Lvv = 2Lww and this relationship is

not found at any time in the decay. Thus in these simulations the negative values of the transverse

correlation function, g(r), appear to be inadequately resolved. Other (DNS) simulations performed

by Sarkar and Hussaini(1993) for smaller values of L_,_,/D show better resolution for g(r) at large

values of r/L in the range of negative values of g(r). In these latter results g(r) develops a periodic

pattern becoming successively negative and positive with a very small amplitude of about 0.01.
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The first negative loop, on the other hand, has an amplitude of nearer 0.1.

(iv) The variations of skewness and flatness during the decay.

Figure(14) shows the variation of the velocity derivative flatness and skewness factors with time

during the decay. In the region from non-dimensional times of 0.4 to 0.8 the skewness factor, 82, is

-0.53 and the flatness factor, T2, is 4.0, but the velocity flatness factor takes on the value T1 = 3

as found in experiments.

(v) The changes in f(r/L) resulting from periodic boundary conditions in the

(DNS) results.

In the 1283 simulations the Kolmogoroff length scales are not resolved and the Taylor microscale

is approximately twice the grid dimensions. Initially the energy containing scales were 1.25 times

the Taylor microscale. In the simulation the energy containing scales grow by a factor of about

1.5 times their initial value, and the Taylor microscale eddies first decrease in size and then in-

crease back towards their initial value. The initial energy wave-number spectrum is defined as

E(k) = k4exp(-2(k/k,n) _) and the velocity has a Gaussian joint probability density function.

With a low wave-number spectrum proportional to k 4 we might expect, as a result of the near per-

manence of the big eddies, that this spectrum would be retained throughout the decay. However

with the use of homogeneous boundary conditions and noting that D/2L is of order 5 for the 643

and 7 for the 1283 simulations, where D is the size of the computational domain, the large eddies

responsible for the low frequency part of the spectrum will be strictly limited to eddies of scale

equal to half the width of the computational domain and the number of such eddies will be strictly

limited. Thus in comparison with unbounded turbulence, at higher Reynolds numbers, (DNS) can

only partly resolve the large eddies responsible for the low frequency part of the spectrum. An

important feature of the (DNS) results is that at low to moderate Reynolds numbers the use of

periodic boundary conditions imposes restrictions on the asymptotic form of the longitudinal ve-

locity correlation function, f(r), since it is a periodic function and is symmetric with respect to the

centre of the computational domain. It is therefore a function unlike that used in the theoretical

analysis which satisfies the asymptotic conditions of approaching zero at large values of r. Some

recent (DNS) calculations of Dubois(1993) in the same Reynolds number range as in the results of

Sarkar and Hussaini(1993), but where the turbulence is forced to prevent the rapid fall in kinetic

energy with time as found in unforced isotropic turbulence, show that although the characteristics

of the longitudinal velocity correlation function, f(r), at small separation distances, r, are similar to

those found by Sarkar and Hussaini(1993), at larger separations the function deviates greatly, being

highly dependent on the forcing frequency, the value of which dominates the low frequency part of

the spectrum at all times in the decay. The magnitude of the forcing energy f.u also has a strong

influence on the characteristics of the longitudinal velocity correlation function at large separation

distances. With strong forcing the longitudinal velocity correlation function does not tend to zero

when r _ D/2, a distance equal to the half-width of the computational domain. Its value is a

function of the forcing amplitude. The (DNS) 96 a computations of Dubois(1993) show that chang-

ing the wave-number of the forcing, from an even to an odd wave number changes the sign of the

longitudinal velocity correlation function at large separations. An immediate conclusion is the ap-

parent sensitivity of f(r) to changes in the boundary conditions and consequent changes to the large
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eddystructurewithin the computationaldomain.The resultsof SarkarandHussaini(1993)show
little changebetweentheir 643simulationscomparedwith their 128z simulations, but the Reynolds

numbers are similar and changes in the grid size appear to be insufficient to effect changes in the

behaviour of f(r) at large separations in r. The results of Dubois(1993) in which the forcing is

made very weak generates values of f(r/L), as shown in Figure(ll), in good agreement with the

results of Sarkar and Hussaini(1993) at small spatial separations but show marked differences at

large separations. The results of Dubois for the longitudinal velocity correlation function, at large

separations, follow more closely a Gaussian distribution as expected at very low Reynolds numbers.

(These differences between forced and unforced turbulence simulations are not surprising although

it cannot be explained why the forced results follow more closely the Gaussian distribution at large

separations than the unforced results.) When the forcing is increased, marked changes occur to

the function f(r/L). However when the effect of the forcing is removed the function reduces to

approximately that of the Gaussian distribution as found for weaker forcing. However a positive

conclusion from this work is that both the forced and unforced (DNS) at similar Reynolds numbers

have similar longitudinal velocity correlation functions at small separation distances and around

the distance r = L, where the energy containing scales are likely to make a dominant contribu-

tion. The shape of this correlation curve in this region r/L < 1 is typical of the results for low to

moderate Reynolds number but differs markedly from the the higher Reynolds numbers of Stewart

and Townsend(1951), as shown in Figure(11). Since a conclusion of this work is that the noise

generated is dominated by the contribution made by the energy containing scales, there appears

some justification in choosing the distribution exp(-_r/4(r/L)2), as used in the calculations for the

acoustic power made above. This has the merit of representing the (DNS) results near r = L, and

satisfies the necessary conditions at r = 0 and r = c¢. As shown in Figure(ll). such a distribution

function is a poor representation, of the results at high Reynolds numbers, at both small and large

separation distances, but we note these results only apply when the time separation effects are

equal to zero. When the full space-time separation effects are considered, however, then we find

from the (DNS) results of Dubois(1993) that the approximate spatio-temporal independence and

self-preserving form of the fourth order covariance used in Equation(3.5), gives a reasonable fit to

the computed longitudinal velocity correlation function at moderate to large values of the space

separation, r, and the time separation, v, and especially around those values equal to the scales

of the energy containing eddies. Such a result is likely to apply over a wide range of Reynolds

numbers, and well outside the limits of the (DNS) range of Reynolds numbers.

So far we have discussed the features of the low wave-number spectrum and its influence on the

longitudinal velocity correlation function. Its high wave-number spectrum rapidly changes, from

its imposed spectrum at time t(e/K)o = 0, since as time advances the nonlinear interactions result

in populating the higher frequencies, and the production of small scales of turbulence down to

the Kolmogoroff dissipating scale, ks. At the low to moderate Reynolds numbers in these (DNS)
results an inertial subrange, with kL << k << ks, cannot exist with a near k -5/3 spectrum. The

k -5/3 spectrum in the inertial sub-range would only exist at much higher Reynolds numbers where

the ratio between L and $ was at least greater than 10. In the 643 simulations the dissipating range

of eddies is not fully resolved. Sarkar and Hussaini(1993) do include a 1283 simulation and although

this simulation resolves the Kolmogoroff scales it cannot resolve all the eddies in the dissipation

range. However it appears to improve the resolution of the larger scales. But a comparison between

the results from both simulations shows that the differences between them are small, at least for

the calculated acoustic power output.
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(vi) The acoustic power distribution.

Fig(15) shows the acoustic power distribution as predicted according to the method described in

Section(4) and in particular to the contribution to the Proudman constant, t_, as a function of the

nondimensional spatial separation distance, r/L. The acoustic power distribution is comprised of

three functions two of which are positive quantities, whereas the third is negative. When integrated

with respect to r/L the first function, which peaks at r/L = 0.56, when combined with the negative

function, which peaks at r/L = 1.38, is exactly zero. The remaining function, which also peaks

at r/L = 1.38, is positive and is the only contribution to the acoustic power. The value of the

Proudman constant, corresponding to the results given in Figure(15) is (_ = 3.6. The values for

the Proudman constant, using Proudman's equation was t_ = 12.5(Proudman gives the value 13.5)

and from our revised equation o = 11.0. The peak values in both estimations occur at r/L = 0.8

approximately. Proudman's results, which make no assumptions as to the value of the turbulent

Strouhal number, as shown in Figure(16), give an acoustic power distribution which is similar to

that found by us in Section(2), although the peak values differ by a factor of about 3, if we assume

a flatness factor of 3, and a turbulent Strouhal number of unity. The differences in these values of

the Proudman constant can be explained in terms of changing the values of the turbulent Strouhal

number from 1 to 1.25. However we cannot overlook the fact that the (DNS) results have shown

that, to a good approximation, the turbulent Strouhal number is approximately unity throughout

the decay. A value of a between 3 and 4.5 is in fair agreement with the results obtained from the

first (DNS) method used by Sarkar and Hussaini(1993). They obtained an average value ofc_ = 2.6,
with a value of a = 3.5 near the commencement of the true decay, when the Reynolds number was

highest, falling to (_ = 1.6 near the end of the simulation when the Reynolds number was very small.

At these low Reynolds numbers the energy containing scales and the Taylor microscales overlapped.

In the second (DNS) method used by Sarkar and Hussaini(1993), they evaluated the two-point lon-

gitudinal velocity correlation function, f(r,t), and the second time derivative covariance of the

Lighthill function Tij as a function of spatial separation and the corresponding contribution to the

acoustic power distribution. This calculation represents the first occasion that a direct calculation

of the second time derivative covariance of Tij has been attempted. The results are compared with

those obtained from our model in Figure(17). We see the large peak values obtained in the (DNS)

simulations where the values peak near the origin. However the value of the Proudman constant

obtained from this result is t_ = 2.8, which is close to that found in our model. This result, which

was obtained at a nondimensional time of T = 0.55, where T = teo/Ko, was quoted by Sarkar and

Hussaini(1993) as giving a value equal to that obtained by their first method, which as stated above

has the average value (_ = 2.6. The overall accuracy of the (DNS) results in calculating the acous-

tic power distribution has not been determined, but our results from Section(2) show the extreme

difficulty to be expected in obtaining an accurate answer to the acoustic power distribution when,

as we have shown in Section(2), the dominant part of the distribution near the origin integrates to

zero as shown in Figure(15).

(vii) The comparison between the second and fourth-order covariances.

Independently Sarkar and Hussaini(1993) and Dubois(1993) have established the correctness of the

Lighthill relationship given in Equation(4.10) above, although the numerical results infer a slightly

lower value for the multiplying factor (flatness factor minus unity) than the measured values of

flatness factor as found by Townsend(1956) for the velocity, and as found in the present (DNS)
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results,both of whichgavevaluesnear3. It might havebeenexpectedthat theflatnessandskew-
nessfactorsfor the velocitysquaredwoulddiffer from thoseof the velocityalone,but the (DNS)
resultsclearlyshowa valuefor T1 just below 3 over the complete time of the simulation. The

results of Dubois(1993) are plotted in Figures(IS) and (19), respectively, for various temporal and

spatial separations and convincingly show that with T1 = 3 the measured and predicted values

of the fourth order velocity covariance are in close accord. Similar results were obtained for the

transverse covariance. In all the results quoted above for the Proudman constant we have used a

value of 3 for the flatness factor, 7'1.

(viii) The turbulent Strouhal number.

We have shown above the importance of the turbulent Strouhal number, ST = LQ/u, in the deter-

mination of the characteristics of the noise generated from turbulence. The results of both Sarkar

and Hussaini(1993) and Dubois(1993) show ST has a value of order unity. However in both works

has not been measured directly as, say, the inverse integral time scale of the turbulence in the

decay. A difficulty is that Q is directly related to the ratio, u/L, which is the inverse of the local

eddy turnover time. This is similar in magnitude, at low Reynolds numbers, to the total time of

the simulation before the turbulent Reynolds number drops to unacceptably low values. In the

present simulations the total computation time is of order 3 to 5 times the local eddy turnover

time. Thus we cannot find reliable values for Ft from the present (DNS) simulations of Sarkar and

Hussaini(1993) for unforced turbulence, due to the difficulty in extracting the effects of the time

decay from the time separation effects. An approximate analysis of the data shows that Ft _ u/L,

corresponding to a value of ST = O(1). If we turn to the (DNS) results of Dubois(1993) for the case

of forced turbulence during the decay, where the kinetic energy remains almost constant we find an

excellent fit with the acoustic power time covariance derived from the measured acoustic spectrum

of Sarkar and Hussaini(1993) shown in Figure(2). The comparison is given in Figure(3) where the
time covariance data from the results of Dubois only show some deviation at large values of the

separation time, v. However the data, as obtained in the simulations, is adversely affected, at large

time separations, by the degree of forcing and this part of the data has been ignored. (Since the

degree of forcing affects the integral length scale, L, we have selected a value which is consistent

with our choice of f(r/L), and the position of the minimum in the transverse correlation function,

g(r/L).) The result of this comparison is that Q _ 1, when u/L = O(1), in confirmation with the

result suggested from the Sarkar and Hussaini(1993) data, and in line with the value of ST = 1

as used in the results presented above. However the overall accuracy of our method of deriving

a value for the turbulent Strouhal number, ST, from the (DNS) results can at best be taken as

an order of magnitutude estimate only, and these values may be shown to be inappropriate for

isotropic turbulence at higher Reynolds numbers. It might be noted, that in predictions of noise

generated from shear flow turbulence, values of ST = 1.25 to 1.75 have been used to calibrate these

with experimental data. If we had used the 'uncorrected' integral length scales from the (DNS)

data of Dubois(1993), then we would have obtained values for the turbulent Strouhal number in

this same range.
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(ix) Summary.

At the Reynoldsnumbersusedin the (DNS)calculationsof Sarkarand Hussaini(1993),the ratio
of the integrallengthscale,L, to the half width of the computational domain was initially 0.14 and

increased to 0.21 towards the end of the simulation. Thus we might expect to see some interference

on the two-point velocity covariance at large spatial separations as a result of the finite size of

the computational domain and the use of periodic boundary conditions. Such conditions are un-

likely to affect greatly the global characteristics of the turbulence, as confirmed by previous (DNS)

simulations. However their effect on f(r) and g(r) is not negligible and will have important reper-

cussions on the characteristics of the noise generated. In Section(2) we showed the noise generated

depended on the distribution of r2(3f 2 + 4fg + 8g 2) and in particular its values at the larger spatial

separations. Moreover, due to the dependence of g(r) on f(r), a large portion of this distribution,
when integrated to find the total acoustic power, has a value of exactly zero. In fact the total

acoustic power is a function of the square of the derivative of the longitudinal velocity correlation

function, and small deviations in the shape of the longitudinal velocity correlation function, will

change the acoustic source function by a significant amount. Of equal importance is the need to

consider the complete space-time properties of the velocity and the velocity squared covariance and

not just their distributions with respect to space and time separately. The problem is compounded

by the fact that the T_x covariance, involving, in the case of turbulence at low Mach numbers,

the velocity squared covariance, is itself of small magnitude in the region of those values of r, and

r, which contribute most to the acoustic power generated per unit volume of the turbulence. Of

course the acoustic power output is proportional not to the covariance of T_ but to 02T_=/Or 2,

and this covariance is not negligibly small. One must therefore provide adequate time and space

resolution over all space and time separations, and especially at large separations, for the accurate

computation of these covariances and their derivatives, and thus of the generated noise. It is this

that makes it such a challenging task in all numerical simulations, and equally in any attempted

future experiments. Sarkar and Hussaini(1993) have tackled all these problems in their pioneering

study with notable success. It is clear however that further work is needed to clarify some bf the

differences which remain between the numerical and analytic investigations, and their extension to

higher Reynolds numbers.

At higher Reynolds numbers, where the size of the computational domain is very large compared

with both the energy containing eddies and the dominant larger eddies, of length scale many times

L, the effects discussed above are likely to have only a small influence on the characteristics of the

turbulence. From the (DNS) computations discussed here, it would appear separation distances0f

at least 8 to 10 energy containing scales are required to minimise this interference. In the present

(DNS) computations such a distance is more than half the size of the computational domain, and it

would appear the characteristics of the turbulence, especially in the larger scales will be influenced

bytheir interaction, which is an interaction not present in isotropic turbulence free from periodic

boundary conditions. A simple way to describe this influence of the periodic boundary conditions

at low Reynolds numbers is to assume, that as a consequence, there exists a class of weak large ed-

dies within the computational domain of size of order half the width of the computational domain.

Their effect on the physical characteristics of the turbulence may not be great for large enough

values of R5 and RA, but their effect on noise generation would appear to be non-negligible owing

to two important factors. These are the resulting non-uniformity of f(r) throughout the compu-

tational domain, and the fact that the noise generation depends on the derivative squared of f(r),

where changes in its distribution are more sensitive than for f(r) itself. At higher Reynolds num-

bers these problems are likely to largely disappear for then the asymptotic form of f(r) is reached

26



at distancessmall comparedwith the half-width of the computational domain. Thus when the

number of energy containing eddies within the computational domain is large enough and averages

are obtained in a volume of the computational domain at a sufficient distance from the periodic

boundaries, then the influence of the periodic boundary conditions is expected to be negligible. In

the present work of Sarkar and Hussaini(1993) the overall interference effects arising from periodic

boundary conditions and the relatively low Reynolds number of the simulations, are found to be

not negligible and hence we must allow for some, albeit small, low Reynolds number effects in

these (DNS) simulations when comparing them with the asymptotically high Reynolds results of

Proudman(1952) and the results presented here. In addition the finite intensity of the turbulence

at the domain boundaries is a problem that needs further careful consideration in any future work

on this same problem. A higher order (DNS) simulation is desirable but is not currently available.

The alternative is to use a Large Eddy Simulation(LES) and work on these lines has recently been

published by Witkowska et al(1993).

We have discussed above the need for high orders of resolution in both space and time in deriving

the fourth time derivative of the Lighthill stress tensor Tij. We have seen we require its value at

all values of space and time separation and not only at either small or large values separately.

The analysis in Section(2) has shown the extreme sensitivity in this function to small changes in

the value of the longitudinal velocity covariance. The analysis, however, cannot predict a value

for this function and we are therefore fortunate in having, for the first time, values obtained from

the (DNS) calculations of Sarkar and Hussaini(1993). As shown above these latter results even

though obtained at low values of the turbulent Reynolds number nevertheless provide important

information with respect to the fourth-order covariance of Tij and its fourth time derivative. Using

the results of Sarkar and Hussaini(1993) for the two-point velocity covariances we are able to

obtain an independent check on the accuracy of the (DNS) simulations. Our fair agreement with

the estimates of the total acoustic power as found by Sarkar and Hussaini(1993) may be fortuitous,

but the indications are that the effects of Reynolds number may be fairly small, although the

changes in the velocity covariance at large spatial separations, resulting from test examples where

the integral scales were no longer negligible compared with the size of the computational domain,

need further investigation. Of more concern are the differences between the computational and

analytic results in the shapes of the acoustic power distribution with spatial separation. Our

analytic results based on the (DNS) results for the two-point velocity covariance, give values for the
fourth-order covariance and its fourth time derivative that follow the trends of our results obtained

in Section(2). These analytic results show clearly the dependence of the square of the derivative

of f on the acoustic power distribution, but this result is not obtained from the data obtained

by Sarkar and Hussaini(1993) from their evaluations of the second time derivative covariance of

Tij. Sarkar and Hussalni(1993) neglect retarded time in their evaluation of this covariance, but

in the light of the small difference found between our calculations and those of Proudman(1952),

it seems unlikely this would be a major source of error in these low Mach number calculations.

However the fourth time derivative of the Tij covariance does require high resolution, as suggested

by the results shown in Figures(3) and'(7) for the time separation correlation function and its

fourth derivative respectively. Sarkar and Hussaini(1993) devoted much attention to achieving that

high order of accuracy by the use of a third order Runge-Kutta time integration scheme with an

extremely small time step. Further work needs to be done however to establish the accuracy of this
scheme. It should be noted that when simultaneous time derivatives, together with ensemble or

volume averages, are taken the operations permute and we are left with an expression for the total

acoustic power similar to that given in Equation(4.32) when the turbulence is both decaying and

self-preserving. This formula gives a reduced value for the total acoustic power, and illustrates the
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extremecareneeded in evaluating the LighthiU Integral, especially when introducing any form of

approximation. There is no evidence this has occurred in the work of Sarkar and Hussaini(1993)

but it is a warning to all future investigators.
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4. Conclusions

In 1952, Proudman applied Lighthill's theory of Aerodynamic Noise to the case of the radiated

noise from isotropic turbulence in near incompressible flow or flow at low Mach numbers. This

fundamental example of aerodynamic noise should be regarded as a 'benchmark' against which the

results from numerical studies of turbulence can be compared under similar flow conditions, using

the methods of Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES).

The results obtained by Proudman for the total acoustic power output per unit volume of tur-

bulence are compared with those obtained by a direct evaluation of the Lighthill Tij covariance.

We use the relationship between the resulting fourth-order covariance and the similar second-order

covariance as first proposed by Lighthill(1992), and in which no statistical assumptions are made.

The relationship is found to be in good agreement with results obtained from (DNS) calculations.

The results obtained by this method are in fair agreement with the earlier results of Proudman,

and the re-evaluated results presented here. However in our method a free parameter is the turbu-

lent Strouhal number, ST, and its value can only be obtained, say, by comparison with the (DNS)

results. These results suggest its value is of order unity. To obtain agreement between our results

and those of Proudman, however, we need a value of ST of approximately 1.25. The recent results

(DNS) results of Sarkar and Hussaini(1993) when compared with the analytic solutions suggest
a value for ST of about unity. The (DNS) results are obtained for an initially moderate, to low,

Reynolds number, Rx, where the difference between the length scales of the energy containing

eddies and the Taylor microscale eddies is less than a factor of 10. In spite of this restriction,

the results for the far-field acoustic spectrum have the characteristics of noise generated at higher

Reynolds numbers, and it is unclear whether or not a significant Reynolds number effect is present
when the results for the total acoustic power output are being compared. Some differences exist

between our results and those of Proudman, and the (DNS) results of Sarkar and Hussaini(1993),

and suggest that in spite of the high resolution in space and time achieved, the demand is for still

higher accuracy in calculating numerically the fourth time derivative of the Tij covariance and its

space time properties. It is hoped that these results will assist in guiding further research in the

field of computational aeroacoustics involving the noise radiated from turbulence, and help to clar-

ify the small differences which remain between these several treatments of the problem of the noise

radiated from isotropic turbulence. Overall it is found that the numerical simulations are capable

of reproducing to a good approximation the flow physics of aeroacoustics involving turbulent flows.
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Appendix 1

The length and time scales of isotropic turbulence

We will define the following length and velocity scales in isotropic turbulence. (i) Taylor microscaie

= A, (ii) Kolmogoroff dissipation scale - Is, (iii) Energy containing eddy (integral) scale = L, (iv)

Velocity of Taylor microscaie eddies = uA, (v) Velocity of Kolmogoroff eddies = us, (vi) Velocity

of energy containing eddies = < u 2 >= u.

Here K -- 3u2/2 : e -- 1.5u3/l, = 1.5u3_/1_ = 1.5ua/L: f"(0)-- -1/A 2 : L = fo f(r)dr. If_

is the kinematic dissipation function, then in isotropic turbulence,

U 2 U 3

= = 1.5T, (A1.1)

and so defining RL = uL/v as the flow Reynolds number based on the energy containing length

scale and velocity, we find,

A 11/_ (A 1.2)
L-- V/_L

and if the Reynolds number of the microscale eddies is defined as R_ = uAIv then,

R_ = vfi0X/_L . (A1.3)

During the decay both IlL and R_ vary with time but in the initial period of decay both RL and RA

are constants. In this initial period of decay the kinetic energy of the turbulence, K is proportional

to t -1 and both L and A increase proportional to t 1/2 . In the final period of decay both RL and

R_ decrease with time with K falling as t -s/2, But in this final period of decay we find although

continues to increase as t 1/2 the energy containing scale L now falls as t -1/4. Eventually RL equals

R_ and this occurs when RL equals 10, based on the defined quantities as given above. These

results for the initial and final decay periods in isotropic self-preserving turbulence are tabulated

in tables (1) and (2) below.

We also have the following relations. The Reynolds number of the Kolmogoroff eddies is unity,

or,

u,l, 1. (A1.4)
v

The velocity flatness, T1 =< u 4 > / < u 2 >2, and the velocity skewness, $1 =< u 3 > / < u 2 >3/2,

factors as measured by Townsend in isotropic turbulence have values close to 3, and zero respec-

tively, which are the values when the joint" probability distribution is normal. Further, from these

same experiments, the velocity derivative flatness factor, T2 =< (Ou/Ox) 4 > /(< (Ou/Ox) 2 >)2,

attains values nearer 4, and the velocity derivative skewness factor, 5"2 =< (Ou/Ox)3/(Ou/Ox) 3) >

becomes negative and attains values of the order of -0.5. From Speziale and Bernard we note

5'2 = A3k'(0) and, G = A4f"'(0), where G is a function of the velocity derivative flatness factor.

It is also given by G = _ < (OOdi/OXjOCdi/OXj) > / ( 5diOdi>. Here k(r/L) is the scalar triple

velocity correlation function, which is related to f(r/L) through the Karman-Howarth equation.

31



In completeself-preservingisotropicturbulenceboth $2 and G remain constant. For the stationary

case, when < u 2 > is a constant, R_ = -2G/$2, and shows the large values of G, and hence of the

flatness factors, that can occur at high values of the Reynolds number.

The relation between the scales L and I8 is,

and,

L R3/4
l--s= L ,

u _I/4

Us

If we define the velocity corresponding to the Taylor microscale as u._ then we find,

(A1.5)

(A1.6)

u______ A ),/3 1.4678
u -(L = _ , (A1.7)

"eL

since e = 1.5u3/L = 1.5u3JA. Similarly we find for the ratio of the characteristic frequencies of the

Taylor microscale eddies, wA, and the energy containing eddies, WL, respectively,

w___= 0.4642R_/3. (A1.8)
03L

We also find that for values of RL < 226 and R_ < 48 the peak frequency, 03,na_, in the acoustic

spectrum exceeds the frequency associated with the Taylor microscale eddies. The frequency of

the Kolmogoroff eddies,.03s, is related to the vorticity since, 038 = u8/18, and the vorticity, ¢o , also

has a magnitude of the order of us/ls. As defined the Strouhal number of the Kolmogoroff eddies,

03sis/us, is unity. On the other hand the Strouhal number, SL, of the energy containing eddies is

equal to 03LL/u. (We can identify the Strouhal number, SL, as equal to the turbulent Strouhal

number, ST, as used in the main text above.) We find using the relations above that,

03LL 03L D1/2 (A1.9)ST = SL -- -- *'_L '
u o3 8

and is a flow constant of order unity, which we assume here is equal to unity. Therefore 038/03L =

Ra/2L , and the peak frequency in the acoustic spectrum exceeds 03s when R_ = 8.9. These are
essentially low Reynolds number limits and are approximate values only depending on the approx-

imations made above with respect to the formulas for the dissipation function and the turbulent
Strouhal number.

Other relations follow. The eddy turnover-time, a measure of the life-time of the domi-

nant eddies, is K/e = L/u = 1/03L, provided the turbulent Strouhal number, ST, is of order

unity, and is therefore proportional to the characteristic time of the energy containing eddies.

Since ST = flL/u = 0(1), the characteristic time of the energy containing eddies is nearly

(i2) -1 = L/u = K/_, the eddy turnover time. Similarly the characteristic time of the dissipat-

ing eddies is, l/w8 = _. These results are tabulated in Table(3) for a large range of RL. The

values given for 03ma:_are equal to V/--8WL.
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Table 1.

Initial Decay. (Self-preserving flow.)

u _ t -1/2

E ,,_ t -2

K ,,_ t -1

R_ ~ RL

L _ t 1/2

A _ t 1/2

A_L

Table 2.

Final Period of Decay.(Self-preserving flow.)

u _ t-s/4

K ,,_t-s/2

R L _ t-3/2

RL = R_ when RL = 10

L r,_ f-1/4

A _ t 1/2

RA _ t -3/4

Table 3.

Approximate Properties of Isotropic Turbulence.

RL R_ A/L I,/A vm_/_L v_/WL

10

100

1000

10000

100000

1000000

10

31.62

100

316.23

1000

3162.3

1.0

0.3162

0.1

0.0316

0.01

0.0032

0.1778

0.1

0.0562

0.0316

0.0178

0.01

2.83

2.83

2.83

2.83

2.83

2.83

1.0 3.16 2.83

2.15 4.64 1.31

4.64 6.81 0.61

10.0 10.0 0.28

21.54 14.68 0.13

46.42 21.54 0.06

Appendix 2

Derivation of Lighthill's Integral in Homogeneous Turbulence.

Lighthill(1952) showed that the density fluctuation at a far-field observer at _ at time t due to a

quadrupole distribution of T_ per unit volume at asource positions y at the source, or retarded,

time % is given by

1 f d 02Txx
(p(x,t)- Poo) - 4rxc L J Y'--_r_ (Y, rA), (A2.1)
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whererA = t- [ x -- y [ /coo. If we next find the similar expression for the density fluctuation at

from a source position z and at an observer time of t + t* then

(p(=,t)- p_)(p(=,t + t*)- poo)

1 02T_, 02T_

where rB = t + t*--Ii - z I/coo. Ifthe turbulenceishomogeneous in space at any given time,

ta, during the decay from some given initial state, then by defining t = td + t' , r = rB -- rA,

7"s = (rA + VB)/2, r = z -- y, we find

rs= td - x/coo, (A2.3)

and noting rA is a function of both td and tt

(p(_,td + t') -- poo)(p(_,td + t' + t*) -- poo)

1 0 4

16r2z2c_ f dy f dr_T_(Y, ra)T_(Y + r, rA + r) •
(A2.4)

Since p and T_x are random functions of time we can find their means, or average values at any given

time, td, during the decay, by either integrating with respect to t I over a sufficient time around td,

or finding the equivalent volume integral, at the given time for each value of the separation distance

r. For homogeneous turbulence the volume integration will be over all yl, surrounding the fixed

point y, of

02 02
-x--_T_(y + y', rA)-ff-_-T,_(y + y' + r, rB). (A2.5)
ara

Hence the autocorrelation of the acoustic power per unit volume of turbulence at time td and time

separation t* is

where

Poo f U(t,, r, r)dr,p,(td, t*) = 4_rc_
(A2.6)

(94

u(t,, r, 7-)=< o_o-_T_(y'7-A)T_(yT-a_ + r,7-A+ _) >, (A2.7)

and ts is related to td by Equation(A1.3) and t* to 7- and r. Here we have assumed that T_z may

2 Since taking the average and differentiating with respect to rA andbe approximated by T_ = u_.

7-B permute we find
02

V(ts,'r, T ) -- 07-2407- _ <: _t2(_I, 7-A)U2(Z, 7-B) >, (A2.8)
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where<> denotes the average value, or ensemble average at the source time,ts, corresponding

to time, td, at the observer. The assumption is also made here that the random fluctuations in

the turbulence, on average, have a continuous spectrum and similarly with respect to the far field

acoustic power spectrum. Thus we can find the power spectral density at the decay time td giving

p¢_ o')4
po(td,w)= 4-_cs f drexp(-ik.r) f drexp( iWr)or_or_Px_,_(t,,r,r), (A2.9)

2 at time, ts, and k -wz/XCoo is the wave number vectorwhere Pxz,_x is the covariance of u_, =

in the turbulence in the direction of the propagation to the distant observer. Its amplitude in our

near incompressible flow is almost zero. The time differentiations with respect to rA and rB can

be replaced by differentiations with respect to r and ts and the operator

¢_4 (020212

04 1 04 1 04

-- Oqr4 20t20r 2 + 1--60t--_" (A2.10)

In general the operator is dominated by the differentiations with respect to r. We find from the

known time dependence of the fall in the turbulent kinetic energy during the decay that the ratio

of the terms is of order (1 : 0.02 : 0.0003). In the earlier work of Proudman(1952) similar ratios

were found. Thus we can write to a good approximation

_4poo f

p.(td, .,) - 4,_c L J d,'exp(-ik.,')P_z,zz(ts, ,', ,_),
(A2.11)

which is the expression used in Section(3) above.

Appendix 3

Proudman's Evaluation of the Lighthill Integral

In the notation of Section(2) above we found the equivalent acoustic source scalar function U (see

Equation(2.6))

U = 8S2AB + 4RABTAB + 4V1 + 8(V2 + V3), (A3.1)

and using the values for RAB, SAB, V1, V2, and V3 given in Equation(2.7) we find

02RAB )2 04RAB 4 02RAB 02RAB
U=8(_ +4RAB_ + Ot_ Ot_

Ut A c,_ B

•ORAB 03RAB ORAB 03RAB _ (A3.2)
8( _A OtAOt_ + OtB OtBcgt'------_Aj"
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If we introduce the notation:

t = tA -t- tB : T = tB -- ta, (A3.3)
2

where t is the mean source time and 7"is the retarded time separation or difference. We need

the following transformation formulae in order to transform our basic equations in rA and r B into

equations in t and v. These are:

0 00t 0 Or 0 0
+ (A3.4)

Ota Ot OrA OT Ova 20t Or

It follows that,

0 0 Ot 0 Or 0 (9

Ots - Ot 0TS + 0T 0rB = 2-_ + _T" (A3.5)

02 02 02 02

Ot_ - 40t 2 OtOr + Or--5" (A3.6)

02 02 02 02

Ot_ - 40t 2 + _ + Or----5" (A3.7)

02RAB 02RAB (A3.8)
S AB - 40t2 0V 2

04RA.------_B = t_2SAB 04RAB 04RAB + 04RA-------_B (A3.9)
Ot2AOt_ OrAOrB 160t 4 20t20r 2 OT4

02RAB 02RAB -O2RAB )2 202RAB 02RAB -02RAB _2+
+

02 RAB )2. (A3.10)

ORA__.____B._ ORAB ORAB (A3.11)
OtA OrB Ot

ORAB 03RAB ORAB c93RAB

i)tA OtAOt2B 4- OtB OtsOt2A =

ORAB 03RAB ORAB 03RAB ORAB 03RAB 20RAB 03RAB (A3.12)
8----Ot Ot3 20r Ot20r- 20t OtOr 2 + -Or 07-3
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The further reduction using Equations (A3.4) to (A3.12) gives, if we write here R = RAB =<

U = 12R_ + 4RRr_r + 16R-:Rrr,-

3 2 1

-_Rtt + -_RRtttt -4P_¢ - 2RttR¢¢ - 2RRu¢r + RtRttt-4R¢Rttr -4RtRtT¢, (A3.13)

where all the terms involving derivatives with respect to t vanish when the flow is stationary. In

the stationary flow case we find as given in equation(11)

U = 12R "2 + 16RIR m + 4RR ml (A3.14)

where the primes denote differentiating with respect to r. Equations (A3.13) and (A3.14) are the

main equations derived in this present analysis. In particular Equation(A3.13) has been derived
with all effects of retarded time retained.

In Proudman(1952) Lighthill's fourth-order covariance is evaluated for the case of near incom-

pressible isotropic turbulence or low Mach numbers, which is exactly the case we have considered
above. In this limit the effect of retarded-time differences between the separated points A and B

is small and is neglected by Proudman. According to Proudman's approximation t A ---- t B. Using

Proudman's notation, and as published,

' (uu'), >< (u,ui), > +U = 12 < utu_ >2 +4 < uu t >< uttutt > +4 <

< (uu')_ > -4 < (uu'),, >< u,u_ >, (A3.15)

where here t is equal to our ta. When we compare Equation(A3.15) with our Equation(2.5)

above, we note large differences between them, and yet both equations have been derived from

Equation(2.3). In our notation, but putting ta = tB , Proudman's Equation as given by (A3.15)

may be rewritten,

U = 9R "2 + 4RR" + 4RIR "t, (A3.16)

where primes denote differentiating with respect to t = tA, and differs from Equation(3.14) as

derived in our revised analysis.

The differences arise, as we will show below, in that Proudman has put the retarded time dif-

ference to zero before evaluating the time differentials, and hence the complete evaluation of the

Lighthill Integral is based on simultaneous covariances.

As stated above Proudman neglects the retarded time difference between the velocities and their

time derivatives at the separated points A and B and hence sets tA = tB throughout his analysis.

Thus we can find U by following the above analysis leading to Equation(2.6), and then introducing

the assumption tA = tB. (The further reduction as performed by Proudman is simplified, if we

define t = tA.) If we now also introduce the isotropy condition that,
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< UU_ >----< UlU$ >,

then derivatives at A and B become simultaneous derivatives.

(A3.17)

(In our treatment, with the retarded-time differences retained, we find,

< uu_ B >#< u'uta >,

since,

ORAB

< >=

ORAB

< u%ta >= Ot---"-A-'

and from Equations (A3.4) and (A3.5) we see these are not equal.)

However the result given by Equation (A3.17) is true in the case of simultaneous covariances

and then we find,

4 < uu'tt > < u'uu >= ( 02 < uu' > )2 + 4 < , 2 u,tu t
Ot2 utu t > -4 < >

0 2 < uu _ >

Ot 2
(A3.18)

and,

, , , >) = 4 0 < uu' > 0 < u_u, > (A3.19)8(< uu'_ >< utu u > + < u_ut >< utuu Ot Ot

With these two results substituted into Equation (2.5) we find that Equation (2.5) reduces to

Proudman's result given in Equation (A3.16) above.

Thus we see that Proudman's result is correct on the basis of the assumptions made regarding (i)

isotropy, (ii) joint normal probability distribution, and (iii) simultaneous space covariances, when
the latter assumption is made at the commencement of the analysis. The result is that Proudman's

assumptions lead to extra terms in U. The correct result is only obtained when the simultaneous

covariance assumption is included at the end of the analysis. In our work we replace Proudman's

Equation (A3A6) by our Equation(A3.14), which was given as Equation(2.8) above.

With the assumption of simultaneous covariances Proudman finds all the two-point covariances

in terms of the longitudinal correlation coefficient f(r,t) where r is the space separation and t

denotes the time during the decay of the isotropic turbulence.

The evaluation of the various two-point second order covariances in U in our work can also be

evaluated by use of the same derivation as found from Proudman's paper for the case where the

retarded time differences are neglected, and it is this approximation we now introduce. Proudman

shows that U depends only on three second order tensors which finally are shown to be functions

of a single scalar function, f(r), the longitudinal velocity correlation function. These second order

tensors, which are all solenoidal, are,
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< >=< > [- f'r rj + ( ry' (A3.20)

< Ot Ot >=< (-_-) > [- ¢'rirj + ( r¢'+¢)_ij], (A3.21)

O2_t i 2 t9 uj
< >=<

Ot2 at 2

where f, ¢, ¢ are even scalar functions

note u is differentiated with respect to

(02u) 2 > (lr¢' (A3.22)

of r and dashes denote differentiation with respect to r. We

time tA and u _ is differentiated with respect to time tB with

the ensemble averages evaluated at tA = tB, and the retarded time difference is then put equal to

zero. Thus although the covariances R and its derivatives in Equation (A3.13) are functions oft, t, v

they are reduced in this los Mach number approximation to functions of (r, t) only. When the flow

locally at any time during the decay is assumed to be stationary we see that the covariance R and

its derivatives are taken with respect to v only and then evaluated at time r equal to zero. It is these
values of R that Proudman finds can be evaluated from the Euler equations of motion, in terms of

equivalent space covariances, since at high Reynolds numbers the effects of viscosity can be ignored.

In the special case of stationary flow we find,

8r [OOr4dr (12(< Ou 2fff Udr= 15 Jo (___) >)2¢,2+

(92u 2 f'_b' _ >f)_(< (-_-)> ¢')).4<u 2>< (-_-) > +16 (<u2 , 0 Ou 2 (A3.23)

The simplified forms of the solenoidal tensors in Equation(A3.23) arises from their volume

integration and noting that its integrand involves only components of the velocity aligned in the

direction between source and observer. In addition we note that,

fo2_ d¢ _o'rSinS tgdtg_o°° lr4¢_2dr 8r oo= _ _o r4¢'2dr' (A(3.24)

and similarly for the tensors involving f and ¢. From Proudman we find, taking the trace of

< -_t _t' :>,

OuiOu: Ou 2 _d< (9-..T oq-.---_-.>=<(-_-) > (r3¢), (A3.25)

and using the Euler equations together with the assumption of a normal joint velocity distribution,

with,

Oui 1 02
< 0---t-0"---t">= ZY-V2 < PP' > - < uiuju_u_ >, (A3.26)Poo Orj Ork
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giving,

and,

Also,

and,

where,

and,

0 2

Orj0rk
__< uiuju_u_k >= (< u 2 >)2_ d[r3(ff, - _f,2 + 4 ff,)]

.Ou. 2 1 1 d

< (-_) > ¢- p_rdr < pp' > -( < u2 > )2(f f" - l f'2 + 4 f f ')

1 jr °° r 2p-T_ < PP' >= 2(< u 2 >)2 (rl_ __)f/2drl.

02Ui 2 , 1 02 ,0 u i Op Op_ Ou_uj Ou_u k
< Ot 20t 2 >= -_-V _ < ---- >-_ < >p_ Ot Ot OrjOrk Ot Ot

Ou 2 1 d Op Op'

< (-_) > ¢- p_rdr < 0---[0---(

Ou)2< u2 >< (-0-t > (-3f'¢'+-- d2(f¢) + 4d_dr¢)- )dr2 r

1 Op Op_ u2 Ou. 2 foo
p--_-_< O--t0--/->= 4 < >< -0_-1 > J_- (r/2 - r2)f'¢'drlrl

(A3.27),

(A3.28)

(A3.29).

(A3.30)

(A3.31)

(A3.32)

Ou. 2 ¢, u2 Ou. 2 4f" 4f' f(¢,,, 4¢" 4¢'
<(-_) > =-< ><(if/-) >[¢(f"'+ r r 2 ) + + r r 2 )]" (A3.33)

If we follow Proudman's notation then for the case of stationary flow we write,

O_po o U 8

Ps - c_ L '
(A3.34)

and using the formulae above, and substituting into Equation(A3.23), we find a is equal to,

8fo_= -_ f2G2x4dx,

4O



]x-_x (fG)- -_x2(fG)) xddx

and

32
]o (3/'+./")(7/c+

G= f" + d f"x --_ f "4,

(A3.35)

(A3.36)

This expression for a differs from that given by Proudman(1952) due to the differences in the

contributions to the function U, as given in Equation(A3.16). The reasons for these differences are

discussed fully above. When we substitute exp(-r2/l 2) for f(r/l) we find c_ = 12.36 compared with

the value of a = 13.5 given by Proudman for f(r/L) = exp(-rr2/dL2) • When we put L = Iv/-d/2

in our result we find

10"96p°cuS (A3.37)
p_ - Lcs

For any given scalar longitudinal velocity distribution function, f(r/L) the values of U and c_

can be found from Equations (A3.14) and (A3.35) with (A3.36) respectively.

For the non-stationary case U must be evaluated from Equation (A3.13) for the prescribed

decay law for < u 2 > as a function of time. This generates additional terms in _, which, following

Proudman's results, we may assume are very small compared with those given in Equation (A3.35),

except in the immediate vicinity of the commencement of the decay before the self-preserving

domain has been established. As Proudman states, the theory, as described here, does not apply

to this region, and hence for most practical purposes the dominant sound power generated by a

field of isotropic turbulence is that due to the sound generated at any time during the decay as if

locally it were a stationary process. Hence it is independent very nearly of the decay law for the

kinetic energy.
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Appe lix 4

Derivation of the Time-Dependent Fourth-Order Covariance in a

Homogeneous Flow.

We write:

P(y,t: r,v) = < (T_- < Tx_ >)(T_- < 7_'x >) > (A4.1)
< Txx >2

where P is the noise source correlation function, and we have made the assumption that < T_ >

is equal to < T_'_ >. Here T_ is the aligned component of Tij in the direction between the source

and the distant observer, and the constant density term has been removed. P involves the fourth

order covariance between the flow properties at two separated points in space and time.

Now the acoustic power output from isotropic turbulence per unit volume in near incompressible

flow at low Mach numbers is,

ps(x,t: t*) - 41rcs dr_(P(y,t: r,T) < Tzz >2), (A4.2)

and using the results of Appendix 3. we find the fourth-time derivative of < T** >2 p(..., r) is:

< Tzz >2 p'"' d < T** >2 P" d 4 < T** >2
- 2dr2 + 16dt 4 P. (A4.3)

At low Mach numbers the frequency, 7, of noise at the observer, is equal to the frequency, w, of

noise at the source, and then for the case of stationary flow:

ps(x, t : w) 2r2P_c_ f f f dr / dr _r4p .04- _-Sn3 _-_nexp(-iwr))exp(-ik.r) < T,_: >2 (A4.4)

If P(r, r) is a symmetric function of both r and r then the terms in odd powers of w are zero.

Thus we find,

p_(_) = 2r2p_ < T_ >2
cL w4P(k,w), (A4.5)

where < Txx >2 is evaluated at time,t. This expression for the power spectral density is used in

Section(3) above.
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